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Abstract

An introduction to predictive distribution modelling for conservation to encourage 
novel perspectives. The rapid pace and potentially irreversible consequences of 
global change create an urgent need to predict the spatial responses of biota for 
conservation to better inform the prioritization and management of terrestrial 
habitats and prevent future extinctions. Here, we provide an accessible entry 
point to the field to guide near-future work building predictive species distribution 
models (SDMs) by synthesizing a technical framework for the proactive conser-
vation of avian biodiversity. Our framework offers a useful approach to navigate 
the challenges surrounding the large spatio-temporal resolution of datasets and 
datasets that favor hypothesis testing at broad spatio-temporal scales and coarse 
resolutions, which can affect our ability to assess the validity of current predicted 
distributions. We explain how to improve the accuracy of predictive models by 
determining the extent to which: 1) dispersal limitation impacts the rate of range 
shifts, 2) taxa are rare at their range limits, and 3) land use and climate change 
interact. Finally, we offer approaches to filling knowledge gaps by creatively lev-
eraging existing methods and data sources.  

Key words: Species distribution model, Environmental niche model, Predictive 
distribution modeling, Climate change, Grinnellian niche, Eltonian niche

Resumen

Introducción a la elaboración de modelos predictivos de distribución para la conservación 
con el fin de fomentar nuevas perspectivas. El rápido avance del cambio global y sus 
consecuencias potencialmente irreversibles hacen que sea urgente predecir las 
respuestas espaciales de la biota para la conservación, con el fin de fundamentar 
mejor el establecimiento de un orden de prioridad entre los hábitats terrestres 
y su gestión y prevenir futuras extinciones. Aquí proporcionamos un punto de 
entrada accesible al campo para orientar la elaboración de modelos predictivos 
de distribución de especies (SDM) en el futuro próximo, sintetizando un marco 
técnico para la conservación proactiva de la biodiversidad aviar. Nuestro marco 
ofrece un enfoque útil para hacer frente a las dificultades relativas a la gran res-
olución espaciotemporal de los conjuntos de datos y a los conjuntos de datos que 
favorecen la comprobación de hipótesis a escalas espaciotemporales amplias y 
resoluciones bajas, lo que puede afectar a nuestra capacidad de evaluar la validez 
de las distribuciones predichas actuales. Explicamos cómo mejorar la precisión de 
los modelos predictivos determinando hasta qué punto 1) influye la limitación de 
la dispersión en el ritmo de los cambios de área de distribución, 2) son escasos 
los taxones en los límites de su área de distribución y 3) interaccionan el uso del 
suelo y el cambio climático. Por último, proponemos enfoques para subsanar la 
falta de conocimientos aprovechando de forma creativa los métodos y fuentes 
de datos existentes.

Palabras clave: Modelo de distribución de especies, Modelo de nicho ambiental, 
Elaboración de modelos predictivos de distribución, Cambio climático, Nicho 
grinnelliano, Nicho eltoniano
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Introduction 

Anthropogenic pressures on climate and land cover lead 
to altered ecosystems and species distributions (Parmesan 
and Yohe 2003). This creates an urgent need for under-
standing species spatial responses to global change and 
ensuring conservation of suitable habitat that supports 
population persistence and conserves biodiversity (Rob-
erts et al 2019, De Frenne et al 2021). Species distribution 
models link species’ occurrence with ecological explana-
tory variables and can be used to predict range dynamics 
for proactive conservation measures (Zurell et al 2016, 
van Rees et al 2022); however, the accuracy of current 
predictive species distribution models where there is a 
lot of occurrence data is still limited by the variation in 
temporal and spatial resolution of datasets used to build 
them (König et al 2021). This is because the capacity 
of species to change their geographic ranges is limited 
by both large-scale factors (i.e., range-wide drivers like 
temperature and rainfall that define macrohabitat) and 
small-scale factors (i.e., individual-specific biotic inter-
actions and resource availability that affect microhabitat 
use). This issue is exacerbated for data-poor species, such 
as rare, cryptic and consequently, many tropical species. 
The limited availability of high-resolution datasets capa-
ble of capturing fine-scale dynamics thus decreases our 
predictive capacity for many such taxa.

A multitude of factors can ultimately influence how 
species, populations, and individuals respond to chang-
ing climate regimes driven by global change (reviewed 
in Peterson et al 2019). Individuals may lack flexibility 
in tracking relevant environmental cues to adjust the 
timing of life history events or to otherwise accommo-
date novel ecological circumstances. Alternatively, even 
when species are flexible in timing life history events, 
they may be unable to modulate behavior in response 
to environmental anomalies that affect recruitment. For 
example, advancing egg-laying dates to match earlier 
spring warming temperatures may have negative conse-
quences for nestling survival when the chances of cold 
snaps are decoupled from warming trends (Shipley et 
al 2020, Sauser et al 2021). Predictions for how animal 
distributions could be altered (shifted, contracted or 
expanded) with climate change may be species-specific 
(Radosavljevic and Anderson 2014, Hallman and Rob-
inson 2020), but research into how particular axes of 
climate change affect species with different life history 
strategies, foraging guilds or habitat affinities provides 
promising insights that may apply to a wider number of 
unstudied species (changing rainfall regimes, Brawn et 
al 2017; rearrangements of ecosystems, Huntley et al 
2008; advances in spring phenology and breeding suc-
cess, Sander et al 2020). Finally, the potential for range 
shifts is ultimately limited by whether potential habitat is 
available, accessible, and whether population density is 
high enough at the appropriate range edge to facilitate 
a shift (Block and Levine 2021, Stiels et al 2021). 

A major gap in the current understanding of how or-
ganisms are likely to respond to global change remains 
in the effect of land use change and its interaction with 
climate change. Dispersal limitation is a critical component 
of distribution model theory, but is difficult to estimate in 
practice (Sousa et al 2021). Species with high site fidelity 

(Merkle et al 2022) or inflexible migratory routes (Stanley 
et al 2012) may not be able to adopt prospecting behav-
iors (searching for new sites; Cooper and Marra 2020) to 
accommodate dispersal to appropriate habitat following 
change. In the Northern Hemisphere, avian migration 
routes and resource tracking are well established (Faaborg 
et al 2010, Thorup et al 2017), but individuals still may 
not be able to correctly time migratory movements to 
keep up with the pace of climate change, as evidenced in 
declining populations that now experience mismatches in 
the timing of annual life history events and peaks in food 
availability (Møller et al 2008, Sander et al 2020). On the 
other hand, multiple Nearctic-Neotropical migrants have 
advanced their spring migration and breeding behavior 
in response to warming spring temperatures (Pecl et 
al 2017, Dunn and Møller 2019, Shipley et al 2020), 
offering support to the idea of ‘evolutionary rescue’, 
where existing variation within annual cycles may yield 
previously unknown adaptive potential (Helm et al 2019). 
Recent research on the interaction between land use 
and climate change points to the need to improve our 
understanding of interacting mechanisms underpinning 
risks to population persistence under climate and habitat 
stressors (Schulte to Bühne et al 2021).

Here, we provide an overview of predictive bird dis-
tribution modeling with the aim to inform future work 
focused on how dispersal limitation, biotic factors, and 
abiotic factors affect distributional shifts in birds and 
other taxa driven by global change. Birds are excellent 
indicators of environmental change, and they have the 
most widespread and in-depth databases on distributions 
(Morrison 1986, Riddell et al 2021), making them excellent 
focal taxa for predictive conservation modeling. Citizen 
science initiatives and long-term research programs have 
yielded an abundance of predictive distribution literature, 
and insights from avian literature should be generalizable 
to other taxa because birds display a wide variety of life 
history strategies (S̜ekercioğlu et al 2019). 

We synthesize theory, methods, and data sources 
widely used to predict bird distributions under global 
change to highlight best practices and opportunities for 
innovation and refinement. Understanding where species 
occur and why some areas are occupied but not others 
is essential for developing effective conservation plans. 
Predictive distribution modeling is important to build 
upon our knowledge of distributions based on surveyed 
areas and to identify potential areas for protection or man-
agement. Modeling wide ranging, unevenly distributed, 
cryptic, or difficult to survey species all present problems 
for understanding factors driving occupancy. Here, we 
bring together the issues that often complicate predic-
tive distribution modeling to offer a solutions-oriented 
approach to habitat conservation under global change. 

Ecological and evolutionary theory as a backbone to 
approaching predictive SDMs

The first step in our synthesis is to illuminate the impor-
tance of a taxon’s ecology and evolution in determining 
their spatial response to global change. Dramatic changes 
in climate over the remainder of this century are expect-
ed (fig. 1), with many species likely unable to survive in 
all of the areas they presently occupy (Sax et al 2013, 
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Fig. 1. Current climate and predicted change in climate of global terrestrial biomes. Climographs of (A) temperate and (B) tropical and subtropical 
global terrestrial biomes. Projected changes in temperature and precipitation regimes for (C) temperate and (D) tropical and subtropical global 
terrestrial biomes. While some areas are predicted to have increased or decreased precipitation in the future, no areas are expected to have 
lower or stable temperatures. Temperature increases are predicted to be higher in temperate biomes, while changes in precipitation are 
greater for tropical biomes. Climographs built from The World Wildlife Fund terrestrial ecoregions (https://www.worldwildlife.org/publications/
terrestrial-ecoregions-of-the-world) and current climate (2021-2040) from CanESM5 middle of the road scenario (SSP3-7.0) accessed from 
Worldclim (https://www.worldclim.org/data/cmip6/cmip6climate.html). The projected change is modeled as the difference between current 
climate (2021-2040, described above) and future climate using the worst-case scenario (SSP4-6.0; 2081-2100) from CanESM5 global climate 
model data (Meinshausen et al 2020). Species’ presence, and thus biodiversity, is highly influenced by biome type, which shifts from one form 
to another according to temperature and rainfall regimes (Whittaker 1975). Projected changes in temperature and precipitation may cause global 
terrestrial biomes to shift in space, but spatial gains and losses by different biomes over time may not occur in synchrony with habitat needs to 
maintain biodiversity (Dorazio et al 2015). R code for producing this figure can be found at: https://github.com/mmacphe/Global_Change_Biomes.

Fig. 1. Clima actual y cambio previsto en el clima de los biomas terrestres mundiales. Climagramas de los biomas terrestres mundiales (A) templados y 
(B) tropicales y subtropicales. Cambios previstos en la temperatura y los regímenes de precipitación en los biomas terrestres mundiales (C) templados y 
(D) tropicales y subtropicales. Si bien se prevé que en algunas zonas las precipitaciones aumentarán o disminuirán en el futuro, no se prevén zonas donde 
las temperaturas bajen o se mantengan estables. Según las previsiones, el aumento de la temperatura será mayor en biomas templados, mientras que 
los cambios en las precipitaciones serán más acusados en los biomas tropicales. Climagramas elaborados de acuerdo con las ecorregiones terrestres del 
Fondo Mundial en favor de la Naturaleza (https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world) y el clima actual (2021-2040) 
sobre la base de la hipótesis intermedia ('middle of the road', SSP3-7.0) del modelo canadiense elaborado para simular los cambios y la variabilidad 
del clima en el pasado, CanESM5, consultado en Worldclim (https://www.worldclim.org/data/cmip6/cmip6climate.html). Para elaborar el modelo del 
cambio previsto, se utiliza la diferencia entre el clima actual (2021-2040, descrito antes) y el clima futuro aplicando la hipótesis más desfavorable 
(SSP4-6.0; 2081-2100) del modelo de datos sobre el clima mundial CanESM5 (Meinshausen et al 2020). La presencia de especies y, por tanto, la 
biodiversidad, está fuertemente influida por el tipo de bioma, ya que cambia de uno a otro en función de la temperatura y el régimen pluviométrico 
(Whittaker 1975). Los cambios previstos en la temperatura y la precipitación pueden hacer que los biomas terrestres cambien en el espacio, si bien es 
posible que los avances y retrocesos de los biomas a lo largo del tiempo no se produzcan en sincronía con las necesidades del hábitat para mantener 
la biodiversidad (Dorazio et al 2015).
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Ceballos et al 2015). Species typically respond to climate 
change in one of three ways: 1) by going extinct, 2) per-
sisting via shifts in geographic range, or 3) adapting in 
place via evolutionary change. Evidence from the fossil 
record suggests all three responses are common (Smith 
et al 1995, Graham et al 1996). The capacity to adapt 
in situ in response to climate change has been relatively 
understudied (Parmesan and Matthews 2005, Jirinec et 
al 2021). A meta-analysis of observed phenological and 
morphological adaptations to climate change concluded 
that morphological trait adaptation, while variable among 
taxa, will not likely work on a sufficient scale to mitigate 
the worst effects of ongoing climate change, whereas 
phenological adaptation (e.g., timing of reproduction or 
migration) could mitigate such effects, albeit imperfectly 
(Radchuk et al 2019). Whether species with relatively 
shorter generation times should be better able to survive 
by evolving in place remains understudied. Advancing 
such research is hampered by the difficulty of conducting 
experiments on large numbers of species at sufficient 
time scales needed to develop a comprehensive frame-
work (Holt et al 2005, Pierson et al 2015). Variability 
among taxa and the short time scales in which we have 
been making observations together indicate that selec-
tion pressure has yet to be strong enough to produce 
measurable changes, though it appears that species shift 
their phenology faster where the rate of climate change 
is higher (Poloczanska et al 2013). Precipitation, and to 
a lesser extent temperature, are the primary drivers of 
adaptive responses to climate change (Caruso et al 2017, 
Siepielski et al 2017, Jirinec et al 2021). 

Relevant ecological covariates inform one of two 
main modeling categories to predict where a taxon could 
occur: 1) species distribution models (hereafter SDMs) 
that comprise presence records and abiotic data, and 2) 
ecological niche models (hereafter ENMs) that explic-
itly estimate the accessible environment (Soberón and 
Peterson 2005). These approaches are meant to have 
high spatial accuracy but are not intended to inform on 
cause-and-effect species-habitat relationships (Merow et 
al 2013). Whether using SDMs or ENMs, these models 
can be based on different niche perspectives, which 
present unique frameworks for estimating drivers of 
occupancy across a species’ range. Here, we list simplified 
descriptions of three niche concepts to provide a basic 
introductory framework for understanding the domain of 
predictive distribution modeling as all are used in mod-
ern predictive modeling (see 'An Overview of Analytical 
Methods' section for more information). Models based 
on the Grinnellian niche concept focus on abiotic drivers 
of site occupancy (Elton 1927, Soberón 2007, Wisz et al 
2013) and SDMs are mainly built under this framework 
(fig. 2, Saupe et al 2012). Coarse-scale variables describing 
ecosystem characteristics are often the most relevant for 
predicting shifting distributions across large spatial ex-
tents. In comparison, the Eltonian niche concept includes 
estimates of biotic interactions and resource-consumer 
dynamics that are only quantifiable at local scales (fig. 2, 
Elton, 1927, Soberón, 2007). Finally, the Hutchinsonian 
niche concept reflects the functional role of a species, 
which is often estimated using functional traits and hab-
itat requirements based on functional traits (Rosado et 
al 2016), and projects the probability of site occupancy 

beyond study areas, including estimates of dispersal 
probabilities in ENMs (fig. 2). Because a species’ ability to 
move beyond their current realized niche depends on the 
relative importance of abiotic factors, biotic interactions, 
and dispersal probability, which can operate at different 
spatial scales (Jankowski et al 2013), knowledge of these 
categories is important for making sound inferences from 
whatever data and analytical approach are used. 

While ENM tools can be used to predict spatially 
beyond the current range of a taxon, they are only able 
to predict the probability of site occupancy within the 
range of abiotic conditions measured within current 
range boundaries. Thus, assessing occurrence or abun-
dance along abiotic gradients is important for predicting 
future range shifts under global change, as this relates 
directly to the response of species or populations to 
the environment. The gradual shifts in temperature and 
rainfall regimes can be expected to align with changes in 
species responses, reflecting the shifts in optimal ambient 
conditions and resulting in altered patterns of probability 
of occurrence or abundance. However, ENM tools are 
limited where climate change introduces novel conditions 
(e.g., Williams et al 2007), and more mechanistic (rather 
than correlative) analytical approaches may provide more 
accurate predictions. 

Demographic information is also useful to incorporate 
for more accurate predictions because spatial ecology 
theory dictates that species respond to continuous 
environmental gradients through gradual changes in 
abundance, as individuals experience shifting condi-
tions toward or away from environmental optima over 
space (Austin 2005, 2007). Populations may also show 
thresholds in abiotic tolerances or in response to biotic 
factors that change their response shape (e.g., creating 
asymmetric or skewed response functions; e.g., Oksanen 
and Minchin 2002). For example, the asymmetric abiotic 
stress limitation (AASL) hypothesis predicts a steeper de-
crease in a species’ probability of occurrence toward the 
more stressful end of a species’ distribution, which has 
been supported in several vascular plant species (Dvorský 
et al 2017). Other threshold-type effects can result in 
asymmetric responses shown across multiple species in 
communities (e.g., sharp ecotone boundaries, appearance 
of dominant predators or competitors; Jankowski et al 
2013). Identifying response shapes is of practical interest 
to understand the impact of abiotic and biotic factors on 
occupancy. The evaluation of responses along abiotic 
gradients are becoming more common but often rely on 
high spatial resolution survey data (e.g., Maggini et al 
2011, Urli et al 2014, Bani et al 2019, Burner et al 2019) 
that is difficult to amass. However, with more studies, 
comparisons across species would enable distinguishing 
commonalities and differences in responses to gradients 
and could point to key environmental variables driving 
patterns in community organization.

Whether populations would be able to respond (in 
time and space) to changing conditions also depends 
on heterogeneity within landscapes; this is the realm of 
landscape ecology land use change. Landscapes can vary 
naturally or due to anthropogenic alterations in ways that 
affect both the phenology of resources (time) or availa-
bility of habitat (space); such variability can be tracked 
if conditions change at a pace that populations could 
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respond to. Examples of this include species adapted to 
annually ephemeral or temporally patchy habitats such 
as wetlands and grasslands; species accustomed to such 
environments may have dispersal strategies that predis-
pose them to better track climate (e.g., Elaenia cristata, 
Ritter et al 2021). In other cases, habitat and resources 
are spatially patchily distributed, and the ability of spe-
cies to respond to changing conditions may be more 
taxon-specific for those that rely on spatiotemporal 
heterogeneity that is naturally patchy. Examples of this 
include habitat specialists in naturally patchy habitats such 
as Amazonian white sand habitats (e.g., rufous-crowned 
Elaenia Elaenia ruficeps, Ritter et al 2021). 

Alternatively, animals may avoid the problem of range 
shifting altogether by buffering themselves from acutely 
unfavorable conditions using microclimate refugia. One 
example of this is through behavioral thermoregulation. 
Ambient temperature is almost never constant in ter-
restrial environments, it varies by time, and by habitat, 
often at very small scales (Scheffers et al 2014, 2017). 
Biologists have long understood that mobile animals 
exploit thermal heterogeneity to maintain optimal body 
temperature (Cowles and Bogert 1944, Porter et al 1973, 
Stevenson 1985, Angilletta Jr 2009, Angilletta et al 2009). 
For cold-adapted species in a warming world, this can be 
achieved by shifting activity times to cooler periods of 

Fig. 2. The ‘BAM’ diagram. The relationship between biotic (B), abiotic (A) and movement (M) (also thought of as ‘access’ and defined by 
dispersal ability) with respect to the authors of various niche theories (left). The location of realized, tolerance, and fundamental niche along the 
intersection of two hypothetical climate variables (right). Sax et al (2013) present an update to niche theory that considers three components 
of a species niche: 1) the ‘realized niche’: i.e., conditions within the native range, 2) the ‘fundamental niche’: conditions, in which a species 
could thrive if it were introduced there and 3) the ‘tolerance niche’: conditions, in which individuals could survive, but likely unable to maintain 
populations over the long-term. The fundamental niche is the set of appropriate abiotic conditions, and the realized niche is a smaller area 
where both abiotic and biotic environments are suitable. Theoretically not all of the realized niche could be accessible and so the potential 
range is yet smaller because it reflects only the area that is suitable and also accessible to the species. Occurrence is not expected outside 
of the colored areas. The occupied area is represented by G0, and G1 reflects appropriate conditions that have not or cannot be accessed by 
the species (as described by Saupe et al 2012). 

Fig. 2. El diagrama BAM. La relación existente entre biótico (B), abiótico (A) y movimiento (M) (también considerado como 'acceso' y definido por la 
capacidad de dispersión) según los autores de las varias teorías del nicho (izquierda). La ubicación de los nichos realizado, de tolerancia y fundamental 
a lo largo de la intersección de dos variables climáticas hipotéticas (derecha). Sax et al (2013) presentan información actualizada sobre la teoría del 
nicho que considera tres componentes del nicho de las especies, a saber: 1) el nicho realizado: las condiciones imperantes en el área de distribución 
original, 2) el nicho fundamental: las condiciones en las que una especie podría prosperar si se hubiera introducido ahí y 3) el nicho de tolerancia: las 
condiciones en las que los individuos podrían sobrevivir, pero en las que las poblaciones tendrían pocas posibilidades de mantenerse a largo plazo. 
El nicho fundamental es el conjunto de condiciones abióticas apropiadas, mientras que el nicho realizado es la zona de menor extensión en la que 
los entornos abiótico y biótico son adecuados. En teoría, no todos los nichos realizados podrían ser accesibles y, por lo tanto, el área de distribución 
potencial es aún menor, ya que corresponde únicamente al área que es adecuada y también accesible para la especie. No se prevé presencia fuera de 
las zonas coloreadas. El área ocupada se representa con G0, mientras que G1 se refiere a las condiciones apropiadas a las que la especie no ha accedido 
o no puede acceder (según lo descrito por Saupe et al 2012).
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the year and day, and by moving to microhabitats with 
cooler microclimates. This capacity to compensate for 
unfavorable ambient temperature by behavioral ther-
moregulation, known as the ‘Bogert Effect’ (Huey et al 
2003), can at least partly mitigate the harmful effects of 
climate warming (Huey et al 2012). However, behavioral 
thermoregulation is contingent on access to cooler ar-
eas and periods; animals already occurring in the most 
buffered environments have limited options for escape 
when conditions change. Furthermore, individuals could 
experience additional pressure from biotic interactions 
with species moving into their habitat to thermoregulate 
(Huey et al 2012). 

Whether taxa will be able to respond to global change 
is ultimately a taxon-specific question driven by the con-
straints of dispersal limitation; one of three fundamental 
aspects of distribution theory (fig. 2). Understanding 
barriers to distributions caused by dispersal limitation 
has been of great interest, for example, in bird species 
unable to cross areas of unsuitable habitat, and has been 
studied both experimentally (e.g., Moore et al 2008, Naka 
et al 2022) and theoretically (Ribas et al 2018, e.g., 2012). 
Selection pressures driving morphology, such as migratory 
compared to sedentary life histories, may play a role in 
physically limiting dispersal distance (Claramunt et al 2012, 
Capurucho et al 2020, Sheard et al 2020, MacPherson 
et al 2022), even in birds. Life history strategies also 
dictate the demographic trends in dispersal; for example, 
in many species it is the inexperienced young that dis-
perse into new areas away from the territories of their 
parents (e.g., Florida scrub jay Aphelocoma coerulescens, 
Suh et al 2020). Dispersal limitation is thus a complex 
and difficult-to-quantify aspect of predictive distribution 
modeling that is nevertheless fundamental for predicting 
the probability of range shifts with global change (reviewed 
in Zurell 2017). Coupling studies of distribution modeling 
with quantifiable measures of dispersal capacity is an 
important next step toward making more informed pre-
dictions of species responses to changing environments 
(Travis et al 2013, Urban et al 2013, Sousa et al 2021).

Ultimately, extinction risk (and conversely, population 
viability) centers on declining population and small popu-
lation paradigms; population ecology. Population declines 
are driven by deterministic (demographic, abiotic, and 
biotic) factors that cause reduction to small numbers (e.g., 
the Allee effect), and also by stochastic factors, which 
dominate the extinction dynamics of small populations 
(Caughley 1994, Morris and Doak 2002, Smith et al 2021). 
The abiotic shifts in conditions due to climate change and 
the resulting shifts in species distributions play a role in 
both types of population dynamics. Shifting distributions 
can cause temporary or permanent reductions in habitat 
area (Thomas et al 2006, van Rees and Reed 2018), low-
ering carrying capacity and driving population declines 
at local or regional scales, or reducing connectivity and 
creating isolated subpopulations that are more susceptible 
to small-population dynamics (Anderson et al 2009). The 
degree to which changing distributions result in commonly 
observed conservation impacts depends on a diversity 
of species traits including habitat preferences and as-
sociations, phenotypic plasticity, and current range and 
population size (Jiguet et al 2007, Visser 2008). Notably, 
research based solely on changes in distributions tends to 

predict widespread extinctions due to the aforementioned 
mechanisms, but plasticity, dispersal, and adaptation 
appear to have been key for many species’ resilience to 
past and current climate change (Moritz and Agudo 2013). 
For example, the Galapagos finches are a well-known 
example of phenotypic plasticity in bill morphology in 
response to environmental change (Weiner 1994, Grant 
and Weiner 2017, Grant and Grant 2020). 

Conservation action that occurs at small spatial scales 
requires deep natural history knowledge for decision-mak-
ing. In this section we described the domain of how 
ecological theory informs spatial responses to land use 
and climate change. When designing research projects 
that aim to predict future distributions under the umbrella 
of conservation ecology, we urge modelers to deeply 
consider the ecology of focal taxa by referring to this 
section again in the future, and the references cited within 
it. Fig. 3 summarizes essential broad considerations for 
predictive distribution modeling by the novice modeler.

A technical overview of occurrence data for predictive 
distribution modeling

Occurrence data through time is the foundation for ap-
plied predictive distribution modeling. Here, we present 
technical aspects of different sources of avian occurrence 
data to inform which questions can be answered with 
different data sets. To assess whether a change in dis-
tribution has occurred or will occur, researchers require 
historical records to establish a baseline for comparison, 
followed by surveys at one or more subsequent time 
points. Although birds are among the best studied class of 
animals, early baseline inventories are still rare, and often 
consist of field notes (Reznick et al 1994), which present 
challenges particularly in reconstructing past abundances 
(Shaffer et al 1998). The aim of general collecting for birds 
by museums is to document with vouchered specimens 
the complete taxonomic representation of a location, 
thus supplying presence and absence information. A 
caveat to this is that complete information is limited to 
small areas of intense investigation, thus limiting the 
widespread application of data gathered by museums in 
presence/absence modelling (e.g., Loiselle et al 2003). 
Although general collecting for birds is no longer the 
norm at some museums (Ferguson 2020, for reasons, 
please see Remsen 1995), museum records remain the 
best sources of historical occurrence data, though they 
primarily supply presence or presence/absence data only 
and not abundance data (Shaffer et al 1998). 

A major challenge for predictive models is rarity or 
sparseness of point occurrence data. Even with many 
potential sources of occurrence data, knowledge of 
bird distributions still varies greatly by species, habitat, 
and geography. For example, rare, nocturnal, and/or 
secretive species and those in remote areas are difficult 
to detect and model accurately (MacKenzie et al 2005, 
Stralberg et al 2015). Rarity is a common characteristic 
of species in diverse tropical communities and remains 
a major challenge for constructing species distribution 
and environmental niche models for tropical species (e.g., 
Marini et al 2010).

In contrast to sparse information from the past, modern 
ornithologists benefit from technological advances that 
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offer unprecedented information on bird occurrence includ-
ing from devices that track individuals beyond specific field 
sites (satellite imagery, Borowicz et al 2018; sophisticated 
automated biodiversity data collection,  Kitzes and Schrick-
er 2019; for birds within appropriate size ranges, McKinnon 
and Love 2018; and online citizen science efforts, Sullivan 
et al 2009, 2014). They improve our understanding of avian 
ecology by identifying previously unknown species-habitat 
relationships (Jirinec et al 2016), migratory routes (Jahn et 
al 2016, 2021, Stanley et al 2012, 2015), foraging areas 
and behaviors (including accessing microhabitat refuges, 
Wolfson et al 2020), and wintering distributions (Renfrew 
et al 2013). These advances facilitate discovery of species 
responses to global change by revealing locations outside 
of direct observation. Aside from emerging technologies, 
simpler monitoring approaches implemented in the past 
at large scales have amassed rich long-term legacy data-
sets (e.g., breeding bird surveys, regional atlases, and the 
5 million bird eggs housed at natural history museums, 
Marini et al 2020), and band recoveries across the globe 
continue to supply information on bird population trends 
and distributions. 

Decisions about which type of occurrence data is best 
for predictive modeling hinges on the trade-off between 
addressing processes affecting the core distribution 
versus a more holistic understanding including unique 
responses at range boundaries, during different life his-
tory activities, or between different sex and age classes. 
Passive acoustic monitoring and long-term studies remain 
promising approaches for capturing relative abundance 
data to estimate population dynamics with respect to 
global change (Pérez-Granados et al 2019, Pérez-Gra-
nados and Schuchmann 2020, Sugai et al 2020). Trait 
databases are gaining momentum as sources of functional 
diversity to test hypotheses under the Hutchinsonian 
niche concept (Gallagher et al 2020, Leclerc et al 2020, 

Matuoka et al 2020, Tobias et al 2022). Exploring how 
functional roles of species change across abiotic gradients 
can dramatically improve our understanding of abiotic 
tolerances to more accurately predict range dynamics. 
For example, bill size has been shown to be important 
for thermoregulation in birds (e.g., Danner and Greenberg 
2015) and a study of functional trait structure along a 
tropical elevational gradient in Malaysian Borneo linked 
larger bills in low elevation communities with thermal 
tolerance (Boyce et al 2019). Current shortfalls in avian 
occurrence data (summarized by Lees et al 2020) require 
an integrated approach to predicting bird distributions 
with global change. Although most efforts to collect 
occurrence data are from small spatial areas (e.g., from 
individual field research sites) and coarse resolutions 
(table 1), this data contributes meaningfully to our un-
derstanding of species-habitat relationships that can be 
applied to predictive modelling.

Selecting appropriate explanatory variables

Predicting distributions relies on accurate assessments 
of life history requirements. In this section, we synthe-
size the spatial and temporal resolution of explanatory 
variables commonly used to match distributions with 
habitat and resource needs. Producing sound predictive 
models requires ecologically relevant, suitable proxies for 
resource or habitat needs (e.g., Burns et al 2020, Randin 
et al 2020). To scale up to entire distributions, there must 
be an underlying knowledge of a species’ life history that 
effectively links the lives of individuals to the explanatory 
variable (or proxy variable) associated with site occupancy. 

Predicting distributions influenced by changing food 
webs requires a breadth in knowledge of life history 
information to predict the probability of species’ ranges 
shifting individually or with their entire biotic communi-
ty. This task is complicated by the potentially differing 

Fig. 3. Essential broad considerations for predictive distribution modeling by novice modelers. Here we summarize this section by highlighting 
common pitfalls observed by the authors while acting as reviewers in the peer-review process. 

Fig. 3. Consideraciones generales esenciales de la elaboración de modelos predictivos de la distribución por los principiantes. Aquí resumimos esta 
sección poniendo de relieve los errores que los autores observan frecuentemente en el proceso de examen por homólogos.

Essential broad considerations for model-building

Common pitfalls of modelers:
• The timing of occurrence points does not match when explanatory 

variable data was collected.
• An artificial species limit is used (e.g., a political boundary) rather 

than the complete distribution which would reflect more accurately 
the range of each explanatory variable.

• Projecting beyond the area reachable by the taxon (e.g., pred-
incting into a distant location unlikely to be reached, or across an 
ecological barrier). 
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needs for each life history stage or demographic, which 
is often the case for birds (e.g., habitat requirements 
may differ between fledglings and adults). While main 
considerations are the spatial and temporal resolutions 
of explanatory variables, biotic interactions can also play 
a critical role (see fig. 2) and may need to be considered 
on a taxon-specific basis. 

Considering the spatial resolution of explanatory variables 

Selecting the correct spatial resolution of explanatory var-
iables to use with occurrence data is key to producing ac-
curate assessments of species-habitat relationships. First, 
matching the spatial resolution of explanatory variables 
with our understanding of the scale at which individuals 

make occupancy decisions (e.g., whether they are micro- 
or macrohabitat based) is important for making proper 
predictions of where organisms could move in the future. 
Second, matching spatial resolution between explanatory 
variables and occurrence data prevents pseudoreplication. 
Specifically, occurrence data may be pseudoreplicated 
if many samples occur in the same pixel of explanatory 
data. Data spatial resolution also affects the possibility of 
model overfitting (i.e., when the importance of a narrow 
set of conditions is overestimated because occurrence 
data come from a limited portion of conditions actually 
experienced by the taxon). 

Remotely sensed spatial products (e.g., NDVI and 
BIOCLIM variables) can be proxies for features of the 
environment being used by individuals at macrohabitat 

Table 1. Geospatial context of common occurrence data sources for birds and explanatory variables. Most occurrence data and explanatory 
variable data layers are of coarse spatial and temporal resolution, making them useful for testing hypotheses under the Grinnellian class of 
niche. Occurrence data sources with fine spatial and temporal resolution are not as common and require higher investment for acquiring 
location data (i.e., GPS tags) or physically tracking individual birds (i.e., radio-tracking) but could be important for testing hypotheses under 
the Eltonian class of niche. 

Tabla 1. Contexto geoespacial de las fuentes habituales de datos sobre presencia de aves y variables explicativas. La mayoría de las capas de datos 
sobre presencia y datos de variables explicativas tienen baja resolución espacial y temporal, lo que las hace útiles para comprobar hipótesis relativas 
a la clase de nicho grinnelliano. Las fuentes de datos sobre presencia con una resolución espacial y temporal alta no son tan habituales y requieren 
una mayor inversión para adquirir datos sobre localización (por ejemplo, marcas satelitales) o seguir físicamente a las aves (por ejemplo, mediante 
seguimiento por radio), pero podrían ser importantes para comprobar las hipótesis relativas a la clase de nicho eltoniano.

Geospatial data qualities Examples of occurrence data sources Examples of explanatory variables  

Large spatial area, coarse spatial Remote sensing assets Long-term averages in stable climates 

and/or temporal resolution (satellite imagery, aerial imagery etc.) (e.g., WorldClim) 

  Automated radiotelemetry Land cover (e.g., MODIS, GlobCover, SPOT) 

  Geolocators Phenology and vegetation indices 

  Citizen Science: eBird, European Bird  (e.g., MODIS, Landsat) 

  Census Council, European Breeding Bird Atlas, Climate record (e.g., NCDC, ClimateNA,  

  South African Bird Atlas Project ClimateSA) 

  Stable hydrogen isotopes Atmospheric weather reanalyses (e.g.,  

  Genetic data ERA, European Centre for Medium-Range  

  Natural History collections Weather Forecasts Re-Analysis; GPM, Global 

   Precipitation Measurement; TRMM, Tropical 

   Rainfall Measuring Mission; NCEP, National 

   Centers for Environmental Prediction)

Small spatial area, coarse spatial Citizen science (e.g., Breeding Bird Surveys, 

and/or temporal resolution Christmas Bird Counts) 

  Natural history collections 

  Field notes 

  Point count surveys 

  Passive acoustic monitoring 

  Long-term datasets 

  Bird banding data

Large spatial area, fine spatial GPS tags Digital elevation models (e.g., ASTER) 

and/or temporal resolution  Vegetation indices (e.g., SPOT)

Small spatial area, fine spatial VHF radio-tags Personal weather data loggers 

and/or temporal resolution  Weather station data
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scales that require occurrence data from a wider distri-
bution. Remote sensing systems with finer spatial reso-
lution, for example light detection and ranging (LiDAR), 
have been used to predict occupancy by light-demanding 
versus shade-tolerant plant species (Wüest et al 2020), 
and direct measurements of structural features of habitat 
(e.g., vertical distribution of forest canopy elements and 
foliage density) used to predict occupancy (e.g., Goetz et 
al 2010). Remotely sensed variables are thought to reflect 
a contingency of resources assuming the data product 
conveys mutual information on a shared spatiotemporal 
scale with the amount of food resources (Riotte-Lambert 
and Matthiopoulos 2020). There are some satisfying 
interpretations of the ecological relevance of these re-
motely sensed products (see Tøttrup et al 2012, drought; 
Renfrew et al 2013, NDVI; Bridge et al 2016, EVI), but 
the typical purpose of using these large scale variables is 
for spatial accuracy and not to infer causal relationships. 

However, explanatory variables that reflect some 
ecological relevancy is important for building accurate 
predictions of how taxa may respond to global change. 
Some remotely sensed abiotic products do reflect a direct 
habitat resource or type. Habitat characteristics (i.e., land 
cover) are most often identified with remotely sensed 
data, which depending on the sensor, can have a variety 
of resolutions. Medium-high spatial resolutions (≤ 30m, 
e.g., Landsat, Sentinel) are useful to pair with more precise 
occurrence data (e.g., GPS tags, point counts; Shirley et al 
2013), whereas low spatial resolution (e.g., MODIS) can be 
useful for occurrence data from geolocators or weather ra-
dar (Heim et al 2020). The temporal resolution of remotely 
sensed data is a limitation, especially when modeling the 
dynamic nature of migratory animals in seasonal environ-
ments (MacPherson et al 2018a, Roslin et al 2021).

Considering the temporal resolution of explanatory 
variables 

The temporal predictability of resources is important for 
predicting future distributions because annual life history 
strategies are dependent upon correctly timing life cycle 
events with required resources. For example, it is widely 
held that birds breeding at high latitudes must correctly 
time the hatching of young with annual insect emergence 
to maximize fledging success, and early arrival to breeding 
grounds may enhance reproductive success (Smith and 
Moore 2005, Kokko et al 2006, Alerstam 2011, Nilsson 
et al 2013). Predictive distribution models are expected 
to be the most accurate when species-habitat correla-
tions are assessed using occurrence and environmental 
data gathered from the same time-period. However, 
the temporal resolution of occurrence data is much 
finer than that of environmental data; this can create a 
mismatch that limits the questions that can be answered 
using current approaches. The habitat requirements for 
fulfilling life history needs may vary depending upon the 
life history event (i.e., mate acquisition, rearing young, 
molting, migrating) and the species life history strategy. 
Life history strategies vary in birds from those that have 
evolved to rely on consistent resource availability (e.g., 
in the case of dietary or habitat specialists that cannot 
live outside of narrow environmental conditions), to 
periodic resource abundance (e.g., seasonal, annual, 

inter-annual weather patterns that drive migratory or 
irruptive population movements), or irregular resource 
availability (e.g., in nomadic taxa), and it is important to 
match locality data in time to environmental data for 
accurate species-habitat assessment. 

The temporal resolutions for widely used climate data 
varies, with trade-offs between temporal and spatial 
resolution in addition to the state of products limiting 
the types of distribution questions that they can inform 
(table 1). We expand on this using the examples of tem-
perature and rainfall explanatory variables in appendix 1 
because these are the two most widely used and generally 
important factors in species distribution modeling (Bradie 
and Leung 2017). 

To build robust predictive models, it is necessary to 
match the spatial and temporal resolution of the occur-
rence data with that of the habitat characteristics. The 
temporal resolution of remotely sensed data is a limita-
tion, especially when modeling the dynamic nature of 
migratory birds where dynamic seasonal habitat changes 
drive short-term habitat quality (e.g., seasonally flooded 
mudflat habitat for migrating shorebirds; Twedt 2013). 
Google Earth Engine (a javascript-based platform where 
one can write their own code to integrate many satellite 
products and independently calculate indices such as 
NDVI) is a flexible tool that can facilitate identifying the 
correct temporal resolution of land cover data to robustly 
test explanatory power of land cover variables. Examples 
of data sets in Google Earth Engine include vegetation 
indices (Landsat, ~2 weeks temporal resolution), products 
for creating land cover classifications (SPOT, ~1 month), 
and static land cover datasets (e.g., GlobCover, Cropland 
Data Layers, National Land Cover Database; table 1).

Considering biotic factors 

Modeling future range shifts in response to global change 
rarely considers biotic factors. This omission is the main 
reason why an assumption of SDMs -that the species is 
at equilibrium with their environment- is rarely, if ever, 
met (Pearson and Dawson 2003). If this assumption were 
supported, the realized and fundamental niche would 
completely overlap as long as the species could access 
all available suitable niche space (fig. 2). Consideration 
of biotic factors has the potential to significantly enrich 
the field of predictive distribution modeling with more 
accurate forecasts, and here we synthesize leading re-
search contributing to this end at both the intraspecific 
and interspecific level. 

It is thought that biotic interactions vary along abiotic 
gradients such that they can either enhance or reduce 
predicted ranges (Louthan et al 2015). However, because 
capturing this information requires both high spatial and 
temporal accuracy across all abiotic scenarios within the 
realized niche, there are few examples to draw from. One 
promising approach to including biotic interactions in 
predictive spatial modeling is the development of causal 
models that estimate the influence of interspecific com-
petition using co-occurrence data (e.g., Staniczenko et al 
2017). The scope and strength of biotic factors may be 
correlated with abiotic pressures (Louthan et al 2015), 
and may differ depending upon which part of the range 
is being considered. For example, much work has been 
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done in the bird literature to improve our understanding 
of species-habitat relationships through the study of 
hybrid zones, which typically occupy only one part of a 
species range (e.g., Taylor et al 2014). Quantification of 
biotic factors, like the ones described here, requires tar-
geted species-specific research to test hypotheses within 
the Eltonian and Hutchinsonian niche concepts. This 
research is mainly done within small spatial extents and 
without consideration of temporal or spatial resolution 
(e.g., co-occurrence records from different time periods 
or datasets with different spatial resolutions, Atauchi et 
al 2018, Palacio and Girini 2018, see also König et al 
2021), but some research has been done at large spatial 
extents and coarse resolutions (e.g., acorn woodpecker 
Melanerpes formicivorus occurrence with Colombian oaks 
in the Northern Andes, Freeman and Mason 2015). 

Intraspecific competition can drive density-dependent 
range shifts in migratory species such that interannual 
selection of locations are dependent on group size and 
food availability (Corre et al 2020). Dispersal limitation 
can contribute to inadequacies in recruitment to new 
or population sink sites, limiting population recovery or 
range shifts despite available habitat (Zurell et al 2016, 
Palma et al 2020). The ability to update behaviors when 
circumstances change (behavioral flexibility) may be key 
for driving range shifts or expansions under global change 
(Blaisdell et al 2021). Further, bird species capable of 
behavioral innovation (a.k.a. plasticity) often have lower 

risk of extinction, as they are better able to adapt to 
changing ecosystems and habitat destruction (Reed et 
al 1999, Ducatez et al 2020). However, metapopulation 
dynamics can affect the introgression of adaptive traits 
such that maladaptive traits restrict range shifts under 
global change (e.g., Lavretsky et al 2020, Garcia-R and 
Matzke 2021). Each of these examples are implicitly ex-
pected to vary across abiotic gradients, highlighting the 
importance of assessing the probability of site occupancy 
beyond the core of a species distribution.

Perhaps more difficult is estimating the strength of 
interspecific biotic factors in shaping distributions be-
cause this requires a breadth of natural history knowl-
edge beyond that of the species in question. However, 
interspecific biotic factors are thought to have strong 
influences on the probability of site occupancy. Preda-
tor distributions can be partially explained by their prey 
distributions (Léandri-Breton and Bêty 2020). Interspe-
cific competition can also exclude species and is often 
assessed using co-occurrence data (Jankowski et al 2010, 
Freeman et al 2016, Elsen et al 2017). Commensalisms, 
where one organism benefits from the presence of anoth-
er organism and the other unaffected, can also facilitate 
site occupancy (Aitken and Martin 2007). Including data 
on the presence of predators, competitors, and commen-
salisms in SDMs can be a useful addition to improving 
models (Jankowski et al 2013). Alternatively, the spatial 
overlap with other taxa may have little influence if the 

Fig. 4. Analytical processes for species distribution models: left: important terms used in describing distribution model data; right: parallel 
workflows for example correlative versus mechanistic predictive modelling.

Fig. 4. Procesos analíticos de los modelos de distribución de las especies: izquierda, términos importantes empleados para describir el modelo de datos 
sobre distribución; derecha: flujos de trabajo paralelos de la elaboración de modelos predictivos correlativos y mecánicos.
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focal species exhibits behavioral avoidance (e.g., via in-
terference competition, Jaeger 1970, or predator-prey 
dynamics, Lukas et al 2021) or the spatio-temporal scope 
of data are not aligned. 

The utility of SDMs to guide predictions of distribu-
tions under global change will certainly be limited by the 
spatio-temporal resolution of environmental variables. 
Even when researchers are mindful when selecting en-
vironmental data suited to answer questions about their 
occurrence data (i.e., using ecologically relevant environ-
mental and climate data across biologically relevant space 
and timescales), a challenge remains in combining and 
contrasting the Grinnellian niche concept (e.g., climate 
variables) against other niche concepts that require finer 
temporal and spatial data (e.g., density of interacting 
species). This problem can further complicate predictive 
models if site occupancy is dependent on time-lags, as is 
the case in some migratory species (Bridge et al 2016), 
and is explored further in the following section. 

An overview of analytical methods 

Predictive models of species distributions can be divided 
into correlative versus mechanistic approaches (fig. 4). 
Correlative models elucidate relationships between spe-
cies occurrence and spatially explicit explanatory variables 
and can be viewed as hypothesis-generating tools. Data to 
parameterize correlative models are readily available (e.g., 
correlating occurrence data with land-cover or weather 
data as described above), making them the dominant 
approach to predictive distribution modeling. Mechanis-
tic models (a.k.a. causal models) are hypothesis-testing 
tools that incorporate physiological tolerance to predict 
where species will be capable of persisting within their 
physiological limits (Guisan and Zimmermann 2000); data 
to support these approaches is more limited. Here, we 
summarize popular SDM tools with important information 
to help novice modelers identify which tool might be 
appropriate given their data and question. Fundamentally, 
any projections of distributions with either approach (i.e., 
correlative or mechanistic) should be built from our best 
understanding of the underlying mechanisms driving 
species presence. We provide examples that students 
can refer to for accessing detailed methodologies.

Range estimates from correlative SDMs are valuable, 
helping us better understand species and their sensi-
tivities to global change. MAXENT is one of the most 
popular SDM approaches, widely used for its ability 
to use presence-only datasets where true absence or 
non-detection data are typically hard to find (Elith and 
Leathwick 2007, Merow et al 2013). MAXENT has been 
useful for modeling distributions of rare or cryptic spe-
cies due to its apparent high performance with small or 
incomplete datasets (Phillips et al 2006, Pearson et al 
2007, Wisz et al 2008, Marini et al 2009, Aubry et al 
2017). Boosted regression trees (BRTs) are one of many 
machine learning techniques well-suited to modeling 
complex ecological data because they can handle different 
types of predictor variables, fit complex nonlinear rela-
tionships, accommodate missing data and automatically 
handle interaction effects between predictors (Elith et 
al 2008, Graham et al 2008). BRTs have been used to 
predict bird distributions using occurrence data for land 
birds (Veloz et al 2015), waterfowl (Barker et al 2014), 

shorebirds (Dalgarno et al 2017), seabirds (Oppel et al 
2012), and owls (Domahidi et al 2019). Hierarchical 
Bayesian models can also integrate various occurrence 
data types (e.g., presence-absence, presence-only, count 
data) to create reliable spatio-temporal distribution mod-
els (Hefley and Hooten 2015). Using continuous spatial 
predictor variables such as land cover, the abundance and 
distribution of species can be predicted over a contin-
uous latent surface (Chakraborty et al 2010), which has 
been useful with waterfowl aerial survey data (Herbert 
et al 2018, 2021). Generalized linear models (GLMs) and 
generalized additive models (GAMs) can be employed to 
understand distributions across multiple environmental 
conditions and also conceptualize patterns in distribu-
tions of abundances across environmental gradients 
(Augustin et al 1996, Smith and Edwards 2021). GAMs 
are used to model nonlinear relationships (e.g., Maggini 
et al 2011). One drawback to GAMs, however, is that 
evaluation of response shapes (e.g., optima, skewness) is 
done through visual inspection rather than statistically. 
Huisman-Olff-Fresco (HOF) models are used to predict 
occupancy along abiotic gradients and are particularly 
useful in evaluating alternative shapes of species respons-
es to gradients, for example, if changes in abundance 
do not exhibit the widely assumed symmetric Gaussian 
functions, but instead show asymmetric, threshold-like 
changes in occupancy over space (Huisman et al 1993). 
HOF response curves can be used to highlight distinct 
distribution patterns such as species replacements, 
allowing inference of potential biotic interactions that 
are otherwise difficult to measure (Jansen and Oksanen 
2013). Species climate response surfaces (CRSs) model 
the probability of occurrence using bioclimatic variables 
(Huntley et al 1995). Given that explanatory variables in 
correlative SDMs cannot be used to infer causation, the 
CRS approach can accommodate interactions between 
abiotic variables to predict distributions under future 
climate scenarios (Huntley et al 2006). The choice of 
predictive SDM technique and quality of SDM product 
are based predominantly on the type of occurrence data 
available and secondarily on spatiotemporal matching of 
explanatory variables.

Mechanistic approaches to SDMs predict areas where 
physico-chemical processes meet life history needs 
(Kearney 2006, Kearney and Porter 2009). For example, 
a biophysical model for the endangered night parrot  
Pezoporus occidentalis in Australia shows how air temper-
ature increases of 3 °C would lead to lethal levels of de-
hydration (Kearney et al 2016). Bayesian networks (BNs) 
are another type of mechanistic model that go beyond 
species-habitat correlations by also considering processes 
that influence occupancy across space and time (i.e., site 
access and selection, Jones 2001). Originally employed 
to model human judgement (Pearl, 1985), BNs have only 
recently been adapted for predictive SDMs (Staniczenko 
et al 2017, MacPherson et al 2018b). Mechanistic models 
are informed by causal relationships based on empirical 
research or expert knowledge. The latter are referred to 
as belief networks (Drew and Collazo 2014, MacPherson 
et al 2018b). Occupancy models are another type of 
mechanistic approach that brings together site access and 
selection in a metapopulation framework (Dallas et al., 
2019), and which explicitly accounts for issues concerning 
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species detection (e.g., Johnson et al 2021, Micheletti et 
al 2021, Valente et al 2024). Mechanistic models enable 
the identification of the most important variables driving 
distribution patterns through mapping the fundamental 
niche, which is helpful to inform conservation and man-
agement decisions when circumstances change. 

Ensemble modeling strategies, in which the predictions 
of multiple approaches are combined or used simulta-
neously, are often suggested to better encompass the 
range of uncertainty in prediction (Araújo and New 2007). 
This method accounts for the fact that model choice is 
often the greatest source of quantifiable uncertainty in 
species distribution modeling and reduces sources of 
bias from the use of a single algorithm (Dormann et al 
2008, Jarnevich et al 2017). Implementing ensembles of 
five or more of the algorithms and approaches described 
above has been greatly facilitated by software packages 
like BIOMOD (Thuiller et al 2009) and VisTrails SAHM 
(Morisette et al 2013), which bring methods together 
into a single analytical environment. Ensembles can be 
used to assess a range of potential projected outcomes, 
forming a ‘bounding box’ or ‘consensus’ across algorithm 
predictions (Araújo and New 2007). Analysis with model 
ensembles typically involves scaling and averaging model 
outputs and, often weighting these by some measurement 
of model performance such as ‘area under the curve’ 
(AUC) score.

The ongoing ‘big data revolution’ in many fields includ-
ing ornithology (La Sorte et al 2018) has increased use of 
artificial intelligence for data handling and analysis (Xia et 
al 2020), especially in correlative distribution modeling. 
Machine learning algorithms like MAXENT (Merow et al 
2013), random forests (Mi et al 2017), neural networks 
(e.g., Manel et al 1999), deep learning (Benkendorf and 
Hawkins 2020) and boosted regression trees (Elith et al 
2006) are now commonly applied SDMs, and are valued 
for prediction and interpolation. They are excellent tools 
for insight into potential future shifts under global change 
(Elith 2017). 

Conservation plans rely on SDMs for future species 
distributions, despite the small, but growing, body of 
literature on ways to incorporate climate change into 
conservation planning (Willis et al 2009, Hole et al 2011, 
Terribile et al 2012, Loyola et al 2013, Nakao et al 2013, 
Jones and Cheung 2015, Alexander et al 2017). The 
predictive power of SDMs for informing conservation 
decisions remains limited by a lack of tool capability to 
calculate confidence intervals around predictions (Marini 
et al 2010), a lack of validation to reduce uncertainties 
and the need for agreed-upon standards for guiding model 
building (Araújo et al 2005, 2019). Using correlative pre-
dictive models is likely to overestimate range shifts and 
extinction risk due to the violations of common assump-
tions in correlative distribution modeling. For example, 
SDMs tend to violate the assumption that the individual 
species is currently at equilibrium within its environment 
(Sax et al 2013, Early and Sax 2014) and do not take 
into account species interactions (Pearson and Dawson 
2003). Despite these criticisms, SDMs remain the ‘best’ 
widely accessible approach currently in use for identifying 
potential future habitat-area (Tingley et al 2014). 

Discussion

To invite novel perspectives into the field of predictive 
distribution modelling, we reviewed the theory under-
pinning how global change shapes range dynamics and 
outlined the technical details of data sources and analytic 
approaches needed for creating sound tests of ecological 
theory to improve predictive models. Predicting where 
species will live in an uncertain future is a central goal 
of modern ecology with several issues complicating the 
production of accurate forecasts. When beginning to 
build SDMs, developing a standard operating protocol for 
model reporting is essential for promoting replication and 
advancement of methods (Zurell et al 2020). This effort 
has recast the basic research question of what limits 
distribution of species - why a species lives 'here' but not 
'there' - as an applied question. Species are already on the 
move in response to recent decades of global change (and, 
depending on the region, predicted trends of reduced or 
increased rainfall; fig. 2), supporting long-held theory that 
climate limits species’ geographic ranges (Tingley et al 
2009). However, the match between species’ distributions 
and climatic conditions is often weak (Chapman 2010, 
Suggitt et al 2012); species vary considerably in their 
observed responses to recent climate change (Lehmann 
et al 2020, Mamantov et al 2021). These observations 
indicate that we are still in the early stages of ecological 
forecasting. To guide future research, we identified three 
core motivating questions that build from our technical 
introduction as the answers to these questions are par-
ticularly likely to generate important advancements in 
the field of predictive distribution modeling.

Is dispersal a rate-limiting step in range expansions?

The proximate driver of range shifts is dispersal; ranges 
expand when individuals move beyond the existing range 
limit. Dispersal constraints are thus one obvious explana-
tion for cases where the rate of species’ observed range 
shifts are failing to track with the rate of changing climate. 
Birds have incredible capacities for dispersal (e.g., Slager 
2020), making it tempting to underestimate the possible 
role for dispersal constraints in avian range shifts, includ-
ing unexplored factors such as site fidelity. However, even 
bird species often show extreme limitations in dispersal, 
suggesting that longer-distance range shifts (e.g., across 
latitudes) may be slow, particularly in heterogeneous 
landscapes, or when species show high specialization to 
their associated habitats. In the temperate zone, even 
some long-distance migrants may show strong site fi-
delity to breeding (and wintering) territories (Winger et 
al 2019), which suggests the possibility that rapid range 
shifts may be difficult to achieve. Lastly, dispersal may 
be possible but may introduce a new trade-off with other 
components of the annual life cycle, such as migration. 
For example, the ability of boreal breeding birds to take 
advantage of newly available forest habitat in the Arctic 
may be constrained by a trade-off with ever-increasing 
migration distances. We can improve our understanding 
of dispersal limitation by creatively pairing historical with 
contemporary datasets to identify patterns of dispersal 
limitation in places where global change has already 
altered species distributions.
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Are species particularly rare at their range limits?

Ecological theory assumes that species are most abun-
dant at the center or core of their range and become 
progressively rarer towards their range limits (the ‘abun-
dant-center hypothesis’, Brown 1984). However, empirical 
patterns of abundance often fail to fit these expectations. 
Whether the abundant-center hypothesis generally holds 
or not is now a matter of debate (e.g., Dallas et al 2020), 
and the answer may have consequences for rates of 
species’ range shifts. For example, low abundances at 
range edges could lead to slower rates of range shifts 
than if abundance distributions are more uniform across 
a core-to-limit transect through a species’ geographic 
range. This could be due to simple numeric effects, range 
shifts are easier when there are more individuals at the 
range edge to start with, or to genetic effects. That is, 
low abundances (and hence lower genetic diversity) could 
reduce local rates of adaptation at range edges, with gene 
flow from the abundant range center swamping any effect 
of local adaptation at the range edge that would facilitate 
range expansion when conditions change (Haldane 1956, 
but see Kottler et al 2021). Pairing occurrence data with 
natural history knowledge of species expanding their 
ranges has the potential to improve our understanding 
of the mechanisms that promote expansion from original 
range boundaries (e.g., the tolerance niche of the asian 
openbill Anastomus oscitans, Lei and Liu 2021; and climate 
matching in the european bee-eater Merops apiaster, 
Stiels et al 2021). Additionally, assessing occupancy from 
the perspective of abiotic gradients rather than focal 
taxa would improve our ability to identify significant 
geographic barriers to range shifts with climate change.

How does land use change interact with climate change?

Like most of the range shift literature, we have focused 
in this review on predicting species’ responses to changes 
in climate per se. But species are shifting (or failing to 
shift) their ranges in landscapes that are increasingly 
dominated by human activities (e.g., Fumy and Fartmann 
2021). Studies that simultaneously incorporate both 
land use and climate change as drivers of distributional 
change are few in number but hold great promise for 
several reasons. First, land use change is an obvious 
driver of species’ distributions; many species simply do 
not persist in landscapes with extreme levels of human 
control. Second, appropriate habitat for most species in 
human-dominated landscapes consists of habitat patches 
of varying sizes with varying levels of connectivity (e.g., 
Neilan et al 2019). This fact elevates the role of disper-
sal in determining whether patches (and scaled-up to a 
larger geographic scale, regions) are occupied by a given 
species. Third, habitat change directly affects local-scale 
climate. Fragmented forests, for example, average sub-
stantially warmer and drier than primary forests (Kapos 
1989, Nunes et al 2022), and ‘urban heat islands’ alter 
local temperatures that are known to affect bird dis-
tributions (in migrants, Bonnet-Lebrun et al 2020; and 
residents, Latimer and Zuckerberg 2021). Hence, land 
use change can act as a multiplier of temperature effects 
on species. Here we emphasize the importance of high 
spatial and temporal resolution datasets for identifying 
mechanisms of global change that affect individual or-

ganisms or populations. Individual-based modelling that 
simulates multiple interacting ecological processes (e.g., 
demography, dispersal, and evolution) have the capacity 
to create more realistic predictive models (Urban et al 
2016). In light of this, mechanistic (rather than correla-
tive) models are likely to be better suited to identifying 
the interaction of land use and climate change when 
environmental conditions can be linked to the biological 
processes of individuals (or the loss of migration with 
increased urbanization, Bonnet-Lebrun et al 2020; e.g., 
thermoregulatory behaviors of individuals in unshaded 
desert areas, van de Ven et al 2019). 

The consequences of climate change for species 
are potentially severe, with widespread predictions of 
extinctions (Thomas et al 2006), yet the application of 
predictive models to conservation and management are 
still limited (but see Casazza et al 2021). Some evidence 
suggests these dire predictions may be coming true. For 
example, warming temperatures have led to local extinc-
tions in mountaintop communities in southeastern Peru 
as species shift their geographic ranges to track climate, 
a potential harbinger of the possible extinction of high 
elevation tropical species (Feeley et al 2012, Rehm and 
Feeley 2016, Freeman et al 2018). Yet species may be 
more resilient than models assume; for example, genetic 
data indicate that many species were able to persist 
through dramatic climate fluctuations in the Pleistocene 
(Song et al 2020, Wogan et al 2020, Bocalini et al 2021). 
Application of predictive distribution modes in conserva-
tion and management should become more widespread 
by including the development of tools for calculating 
confidence intervals (Marini et al 2010) and validating 
models (i.e., comparing past to present distributions with 
respect to global change) for correlative models, and 
increasing the use of mechanistic models.

Humans have already made Earth hotter than it has 
been since before the Pleistocene (~ 2 mya). This rapid 
change in Earth’s climate has set species on the move and 
led to a plethora of scientific research aimed at predicting 
where species will live in the coming decades as warming 
continues. These predictions, though frequently made, 
are seldom tested (Tayleur et al 2015, Wilson et al 2018; 
but see Tingley et al 2009). Without this crucial step of 
model validation, it is impossible to assess the usefulness 
of predictive models. Here, we have presented theory 
and highlighted a range of data sources and analytical ap-
proaches that can be used to predict species’ geographic 
responses to climate change. Ever-greater computational 
power, combined with increasingly large datasets of spe-
cies occurrence and landscape covariates, permit the use 
of greater complexity in models (e.g., Lurgi et al 2015). 
However, more complex does not necessarily equate to 
better. The litmus test for any predictive model is how 
well it predicts reality. To this end, we advocate for an 
increasing focus on collecting empirical data that matches 
the spatio-temporal resolution of occurrence data with 
environmental variables, tests hypotheses beyond the 
Grinnellian niche concept, and directly evaluates model 
predictions (e.g., using mechanistic SDMs or resurveys). 
For example, the long-term predictions from models 
whose predictions are not met over the short-term are 
unlikely to be helpful (see Willis et al 2009). Determining 
species’ resiliency will depend on accurate estimates of 
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the fundamental niche including which attributes make 
some species more vulnerable than others, which abiotic 
gradients are the most important to consider for the 
promotion of population persistence, and including biotic 
interactions in predictive, validated models. Our review 
aims to support the ongoing pursuit of more meaningful 
predictive distribution models under land use and climate 
change that will be of great near-term utility. 
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Appendix 1

Predicting future distributions from current relationships with explanatory variables is often done using freely 
available future climate projections (e.g., various ‘business as usual’, ‘middle of the road’, and ‘worst case scenario’ 
models downloaded from https://www.worldclim.org), whereas hindcasting distributions is often done using paleo-
climate models downloaded from the Intercomparison Project Phase II at https://www.pmip2.lsce.ipsl.fr. Here, we 
elaborate on the challenge of matching occurrence data with temperature and rainfall explanatory variable data 
sources because these are the two most widely used and generally important environmental factors in species 
distribution modeling (Bradie and Leung 2017). The finest spatial and temporal resolution of environmental data 
is typically from weather station data from the nearest station to the research site (e.g., from https://www.wun-
derground.com/history) or by collecting weather data alongside occurrence data using data loggers available from 
various manufacturers (e.g., Meter, Truebner). The ERA5-Land dataset provides fine scale (hourly) temperature and 
precipitation data, but at a 9 km spatial resolution from January 1950 to present (https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview). National Centers for Environmental Prediction (NCEP) 
provides global temperature and precipitation data (four-times daily) data at a 0.25 x 0.25 degree grid resolution 
from 1948-present (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html). WorldClim is a commonly 
used source of environmental data, and the current version (2.1) provides global monthly values of min and max 
temperature, and precipitation averaged from 1970-2000 (Fick and Hijmans 2017). Historical monthly min and max 
temperature, and total precipitation data used for hindcasting are averaged by decade from 1960-2018 (Harris et al 
2014, Fick and Hijmans 2017). BioClim data are 19 quarterly estimates derived from WorldClim monthly temper-
ature and rainfall values that are thought to be more biologically meaningful than raw temperature or rainfall data 
(Busby 1991). Despite being powerful tools for assessing macroclimate associations, caution should be used when 
using the most accessible climate products to inform conservation decisions by assessing the probability of future 
range locations with empirical validations that climate products (e.g., Bioclim variable 1, annual mean temperature, 
Bioclim variable 5, max temperature of the warmest month) are ecologically relevant to site occupancy.
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https://www.pmip2.lsce.ipsl.fr
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