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Abstract
Towards the mother–of–all–models: customised construction of the mark–recapture likelihood function.—
With a proliferation of mark–recapture models and studies collecting mark–recapture data, software and
analysis methods are being continually revised. We consider the construction of the likelihood for a
general model that incorporates all the features of the recently developed models: it is a multistate
robust–design mark–recapture model that includes dead recoveries and resightings of marked animals
and is parameterised in terms of state–specific recruitment, survival, movement, and capture probabili-
ties, state–specific abundances, and state–specific recovery and resighting probabilities. The construction
that we outline is based on a factorisation of the likelihood function with each factor corresponding to a
different component of the data. Such a construction would allow the likelihood function for a mark–
recapture analysis to be customized according to the components that are actually present in the dataset.
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Resumen
Hacia el origen de todos los modelos: una construcción personalizada de la función de verosimilitud en los
estudios de marcaje–recaptura.— Dada la proliferación de modelos de marcaje–recaptura y de los
estudios que recopilan datos al respecto, los programas  y los métodos de análisis se hallan sujetos a
una continua revisión. En el presente estudio examinamos la construcción de la función de verosimilitud
para un modelo general que incorpora todas las características de los modelos desarrollados recientemente.
Se trata de un modelo multiestado robusto de marcaje–recaptura, que incluye las recuperaciones de
individuos muertos y los reavistajes de animales marcados, parametrizándose con respecto al reclutamiento
específico a un estado, la supervivencia, el movimiento y las probabilidades de captura, las abundancias
específicas de un estado, las recuperaciones específicas de un estado y las probabilidades de reavistaje.
La construcción que presentamos se basa en una factorización de la función de verosimilitud, de modo
que cada factor corresponde a un componente distinto de los datos. Dicha construcción permitiría
personalizar la función de verosimilitud en los análisis de marcaje–recaptura de acuerdo con los
componentes que están realmente presentes en el conjunto de datos.
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data and the parameters of interest. Good knowl-
edge of the mark–recapture literature is required for
the user to correctly select the model.

Many of the models in MARK represent small
variations on a basic model type. For example the
joint models of Burnham and Barker are closely
related: Burnham’s model extends the CJS model
to include data from dead recoveries of animals
and Barker’s model extends Burnham’s to include
resightings of animals between sampling occasions.
The Pradel "survival and seniority", "survival and
lambda", and "survival and recruitment" models
represent three different parameterisations of the
same model. The "Recoveries only" and "Brownie
at al. recoveries" models in MARK also represent
different parameterisations of the same model. A
strength of MARK is the ability to add constraints
and covariate effects to the model easily in a
generalized linear modelling framework.

Although the generalized linear model approach
is very flexible, multiple parameterisations of the
same model are included in MARK because con-
straints that are easily included under one
parameterization may be difficult to include under
another. For example, an analysis of open popula-
tion data using Pradel’s (1996) model in which re-
cruitment rate f is equal for all periods, or follows a
linear trend on the log–scale, is easily implemented
if the model is parameterized in terms of  and f.
Including this same constraint when the model is
parameterized in terms of  =  + f is more difficult.
If a logit–link is used for  and a log–link for  in this
situation to model the effect of covariates, say, the
required constraints become nonlinear and cannot
be coded using the design matrix.  Another example
where constraints that are linear under one
parametrization and nonlinear under another is the
closed–population heterogeneity model of Agresti
(1994) and Tjur (1982). Using a log–linear specifica-
tion in which the encounter history probabilities are
expressed in terms of parameters representing log–
odds of capture and log–odds ratios the required
constraints are linear. If the model is instead
parameterised in terms of capture (p) and recapture
(c) probabilities, as is done in MARK, the required
constraints are nonlinear.

As the choice of models and complexity of soft-
ware grows it is worth reflecting on whether the
software can be improved. Below are some require-
ments we consider necessary for good mark–re-
capture software:

1. A choice of models that allows full use of all
relevant data should be available. The choice of
model should be guided in an obvious way based
on the data available and the parameters of inter-
est. One challenge is incorporating data from sev-
eral sources. For example, a mark–recapture study
might generate live recaptures, dead recovery, and
resighting data. Alternatively, data might be avail-
able from several simultaneous studies. Multiple
sources of data are important because it is often
expensive to mark large numbers of animals but
follow–up information can be relatively easy to

Introduction

The ability of biologists to collect varied and interest-
ing data on the re–encounter of marked animals
means that existing methods of analysis are often
inadequate. This has been a major driver in the
development of new mark–recapture models over
the past 10–20 years and emphasises the impor-
tance of the relationship between data collection,
models, and software development. As software has
become increasingly available and mark–recapture
models increasingly understood, more diverse mark–
recapture data have become available. This in turn
has spurred the development of new methods.

Our ability to learn from studies has always been
limited by computing ability and the availability of
suitable software. Early mark–recapture software
such as program BROWNIE (Brownie et al., 1985)
or JOLLY (Pollock et al., 1990) was relatively easy
to use but offered relatively little choice in models.
Three significant advances in mark–recapture soft-
ware were: (1) program SURVIV (White, 1983)
which allowed customized development of general
multinomial models; (2) program SURGE (Lebreton
& Clobert, 1986) which allowed use of a general-
ized linear model framework for open population
mark–recapture models; and (3) program MARK
(White & Burnham, 1999) which offered a "user–
friendly" windows–based front–end that allows a
wide choice of models and the flexibility of the
generalized linear modelling approach. Program
SURGE has also been generalized to MSURGE
(Choquet et al., 2004) which allows multi–state
models to be fitted with the model specified through
a windows–type front–end.

In the past 10 years in particular there has been
a proliferation of mark–recapture models. As these
models have developed they have been incorpo-
rated into program MARK. This has culminated in a
rapidly–lengthening model list of model choices
confronting a user beginning a new analysis in
MARK. At the 1997 EURING meeting the new
analysis menu in MARK offered a choice between
10 models. Currently, there are 47 models for the
user to choose from.

The models available in MARK can be catego-
rized as open–population models that are condi-
tional on release including the Cormack–Jolly–Seber
(CJS) model (Cormack, 1964; Jolly, 1965; Seber,
1965), band recovery models (Brownie et al., 1985),
multistate models (Brownie et al., 1993; Schwarz et
al., 1993), joint recapture, dead recovery, and
resighting models (Barker, 1997; Burnham, 1993),
closed population models (Otis et al., 1978; Norris &
Pollock, 1996; Pledger, 2000), robust design models
(Pollock, 1981; Kendall et al., 1997) including ro-
bust–design generalizations of multistate models
(Schwarz & Stobo, 1997; Kendall & Bjorkland, 2001)
and of joint recapture, resighting and recovery mod-
els (Lindberg et al., 2001), and open population
models that consider abundance or population growth
(Pradel, 1996; Schwarz & Arnason, 1996). The cor-
rect choice of model depends on the nature of the
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obtain. This is especially true as marking technol-
ogy improves. Using radio–telemetry it is now pos-
sible to obtain large amounts of data, often in
continuous time, from a relatively small number of
tags. Making full use of these data is important so
that maximum value is obtained from the study.

2. There should be flexibility to include nonlinear
constraints in a simple way. It should also be possi-
ble for the user to estimate functions of parameters
without having to reparameterize the model.

3. The software needs to have effective methods
for dealing with large numbers of nuisance param-
eters. Many of the parameters in mark–recapture
models are needed to describe aspects of the sam-
pling process that are not of biologically intrinsic
interest. The focus of the biologists should be on
modelling interesting demographic patterns rather
than the sampling processes required to obtain use-
ful estimates of demographic parameters.

4. The models that are available should lend
themselves to hierarchical extensions. Hierarchical
modelling is of increasing interest as methods for
fitting these models develop. Firstly, hierarchical
models allow modeling of the relationship between
parameters and parameter covariates; this process
allows relevant biological questions to be answered.
Secondly, they provide a framework for dealing with
large numbers of nuisance parameters. Of the two
reasons, the first is perhaps the most important. To
illustrate this point, suppose it were possible for
biologists to visit a study site regularly, and instead
of marking and recapturing animals, they could some-
how record the correct values of critical parameters.
The biologists would almost certainly want to treat
these repeated observations as data and fit some
sort of model to the parameters. Hierarchical mark–
recapture models that allow parameters to be mod-
elled as random variables (i.e., as "data") are poorly
developed. Most mark–recapture models focus on
modeling the sampling process and regard the pa-
rameters as fixed constants to be estimated. In
many respects, this focuses on the wrong process; it
is the demographic mechanism that generated the
parameters that should be of primary focus.

Recently developed models such as the joint
model of Burnham (1993) or the robust design
model (Kendall et al., 1997) have a specific likeli-
hood function that has been coded in program
MARK. We can envisage, however, a general model
that incorporates all the features of the recently
developed models: it is a multi–state robust–design
mark–recapture model that includes dead recover-
ies and resightings of marked animals and is
parameterised in terms of state–specific recruit-
ment, survival and capture probabilities, state–spe-
cific abundances, and state–specific recovery and
resighting probabilities.

One approach to developing software for a general
model would be to write code that programs the
complete likelihood function for the model. While it
could be used as a basis for virtually all mark–
recapture analyses it would be far too general for
most studies. Irrelevant components of the model

would need to be disabled by making appropriate
parameter constraints. An alternative approach would
be to compartmentalize the model in such a way that,
through an interface, the user was able to construct a
customized likelihood by making appropriate selec-
tions from a choice of modules. Future work would
focus on developing new modules rather than com-
pletely rewriting the likelihood function to accommo-
date new sampling and modeling developments.

In the rest of this paper we outline how such a
customized likelihood function might be constructed.

A general likelihood for capture–recapture
models in discrete–time

An underlying feature of almost every mark–recap-
ture (MR) model is the need to model the capture
process. Data from a MR experiment can be con-
sidered as repeated categorical measures with miss-
ing values. These missing values arise because
animals can avoid capture and because the prob-
ability that an observation is missing depends on
the survival status of the animal, it is important that
the capture process is modelled correctly. Two
approaches to modelling MR data have been devel-
oped. The first is based on direct modelling of the
encounter histories using capture and survival prob-
abilities. These approaches are exemplified by the
sequence of models M0 through Mtbh as coded in
program CAPTURE (Otis et al., 1978) for closed
populations and by models such as the CJS model
and the band return models of Brownie et al. (1985).
These models are parameterised directly in terms
of capture and survival probabilities. Model selec-
tion tends to focus on selecting a simplified de-
scription of the sampling process, and comparing
different demographic parameterisations. The cap-
ture probabilities are often regarded as nuisance
parameters in these analyses.

More recently, loglinear models have been used
for analysing mark–recapture data. Most of the
work has been on closed population models, al-
though there has been some work on modelling
open population models. The log–linear approaches
pioneered by Fienberg (1972), Cormack (1989) and
Agresti (1994) provide a general framework for
analysing mark–recapture data. In this approach
the data can be thought of as contributing to a 2k

contingency table with each sample generating a
binary classification according to whether or not an
animal is caught (0,1). The cell corresponding to
the null history 00…0 is missing. The likelihood
function is expressed as a linear function on the log
(or multinomial logit) scale of main–effects and
interactions. The most general (saturated) model
contains k main–effects and all interactions up to
and including the (k – 1)–way interaction. A k–way
interaction cannot be fitted due to the fact that the
null cell 00…0 is unobservable.

The emphasis in the log–linear approach is in
selecting between models with different interaction
terms included in the model. For closed populations,
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model M0 corresponds to a model in which the
main effects are equal, and all interactions are
zero. Model Mt arises when the main effects are
different but all interactions are zero. For these
populations the interactions are usually regarded
as nuisance parameters; the emphasis is on adopt-
ing a parsimonious model to obtain an estimate of
abundance with small error. For closed populations
the log–linear approach is a powerful technique
that allows a full range of models to be fitted
including versions of Mb, Mtb, Mh, Mbh and Mtbh in a
likelihood framework.

The loglinear approach has been applied to open
populations by Cormack (1994) and more recently
Rivest & Daigle (2004). For these populations,
certain interactions must be included in the model
to allow for mortality and births. The research
emphasis has largely been on identifying equiva-
lent log–linear models for standard models such as
the Jolly–Seber model (Cormack, 1994) or the
robust design (Rivest & Daigle, unpublished). How-
ever, there has been recognition of the potential
that log–linear models have for increasing the rich-
ness of model structure in a parsimonious manner.
For large studies involving many years the potential
number of models is very large. For example, a 20–
year single–state mark–recapture model has the
potential for a model that has up to 1,048,575
parameters with a very much larger number of
reduced parameter models! Clearly we are only
ever likely to explore a very small fraction of these
potential models, most of which will be too compli-
cated to be useful. This large number of potential
models also makes clear the importance of identify-
ing a reasonable set of possible models be identi-
fied before model fitting and that an approach
based on a philosophy of exploring all possible is
fruitless. An advantage of the log–linear approach
is that the fit of the model is often improved by the
addition of a small number of interaction terms that
allow some dependencies between samples but
without the large number of parameters needed to
specify full dependency.

Although log–linear models have only been ex-
plored for closed populations, and for straight–
forward Jolly–Seber and robust–design type mod-
els, they can in principle be extended to allow for
other types of data including dead–recoveries and
live–resightings, and to multiple capture/recapture
states. For multi–state models, each additional state
contributes another level within the capture classifi-
cation. That is, instead of a 2k cross–classification
it leads to a Sk cross–classification. The inclusion
of dead recoveries and live resighting also contrib-
ute additional classification states. We can envis-
age then a general model that has multi–state
captures/recaptures, dead recoveries, and live
resightings. Instead of a simple 0 (not caught) and
1 (caught) we can extend the MARK LDLD…LD
data classification to 00,10,20,…,S0,11,21,…,S1,
12,22,…,S2,01,02 where the "L" member of the LD
pair indicates capture state 0,1,…,S and the "D"
member of the LD pair for the interval beginning

with sample i takes the value 1 if the animal is
found dead in [i, i+1), 2 if resighted alive in [i, i+1),
and 0 otherwise. For this model, we have a k3(S+1)

cross–classification with the potential for k3(S+1)–1
identifiable parameters. For example, a 5–period
model with 3 states could have up to 499 param-
eters increasing to 3,999 for a 10–period study.
This result emphasises the need for constraints
that reduce the number of parameters in order to
provide relatively simple descriptions of such com-
plicated data sets.

In the log–linear approach it is relatively easy to
find a parametric summary of important features of
the data using standard linear modeling and model
selection techniques. By incorporating the appro-
priate interactions for describing between–sample
dependencies virtually any mark–recapture model
based on a multinomial likelihood in discrete time
can be accommodated. The difficulty lies in inter-
preting the coefficients of the fitted model. For the
biologist, the parameters need to be expressed in
terms of natural parameters such as survival and
capture probabilities. If the log–linear approach is
to develop, research needs to focus on identifying
constraints on interaction terms that correspond to
a reasonable set of constraints on the capture/
recovery/resighting processes such as age–depend-
ence, temporary trap response, and simple hetero-
geneity (Agresti, 1994; Tjur, 1982).

An alternative to the log–linear approach is to
identify a useful set of constrained models by
directly modelling the capture and demographic
processes. This has been the traditional approach
used in mark–recapture modelling. Below, we
sketch out how the very general model described
above could be constructed by adding factors that
correspond to different components of the data.
Such a construction would allow the likelihood
function for a mark–recapture analysis to be cus-
tomized according to the components that are
actually present in the dataset.

Factorization of the CJS and JS models

Principal among open population capture–recap-
ture models is the Cormack–Jolly Seber (CJS)
model, first developed by Cormack (1964) and later
extended by Jolly (1965) and Seber (1965). Under
the assumption that all animals have the same
probability of survival between sample i and i+1,
and the same probability of capture in sample i,
data in the CJS model can be summarized by an
encounter history, with the count Xw denoting the
number of animals that share the history w. The
probability model used for inference is based on the
joint distribution of the set of encounter histories
which we denote by [{Xw}].

In the CJS model we condition on the first
release of each animal; implicit in this is the idea
that although the numbers of animals released in
each sample are usually random variables, their
distribution is uninformative about the parameters
of interest: the survival and capture probabilities.
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Following Link & Barker (in press) we summarize
the number of animals first caught at i by ui.
Excluding the null history 0 = 00…0, we can write
the joint distribution of the encounter history counts
conditional on the first captures as [{Xw g 0x{ui}]
which factors as:

[{Xw g 0x{ui}] = [{Xw g 0x{Ri}] x [{Ri}x{ui}]

The first term, [{Xw g 0x{Ri}] is the distribution of the
encounter history counts conditional on the releases
and so represents the CJS model. The second term
[{Ri}x{ui}] represents the distribution of the releases
conditional on the first captures. It is needed to
complete the description of the encounter histories
but is usually of little interest. If there are no losses
on capture, then [{Ri}x{ui}] = 1.0 and the CJS model
is [{Xw g 0x{ui}]. If there are losses on capture then
the term [{Ri}x{ui}] can be factored out. In our
discussion below we refer to [{Xw g 0x{ui}] as the
CJS model; it is understood that if losses on cap-
ture are present, they are factored out of the model.

Where interest is in all demographic processes
contributing to population dynamics, the CJS model
is inadequate as the only demographic parameters
are the survival probabilities. Information in the data
about birth and abundance processes is contained in
the distribution of the {ui}. For example, the Jolly–
Seber model is represented by multiplying the distri-
bution [{Xw g 0x{ui}] by [{ui}x{Ui}] where Ui denotes the
number of unmarked animals in the population at
the time of sample i (Seber, 1982). Thus, the Jolly–
Seber model can be constructed from three distinct
factors, each representing a distinct aspect of the
sampling process.

An alternative extension of the CJS model devel-
oped by Schwarz & Arnason (1996) building on
ideas from Crosbie & Manly (1985) is to multiply
[{Xw g 0x{ui}] by [u.xN] x [{ui}x{u.}] where [u.xN]
represents the distribution of the number of un-
marked animals caught during the study condi-
tional on N, number of animals that were ever
available for capture during the study. The term
[{ui}x{u.}] represents the distribution of captures of
unmarked animals conditional on u.; that is, it
models the first capture of an animal given that it
was ever caught. If the survival probabilities are
constrained to one, and if all animals that were ever
available for capture were present in the study
population at the start of the experiment, then

 [u.xN] x [{ui}x{u.}] x [{Xw g 0x{ui}]

describes the distribution of the encounter histories
for a closed population study with population size N.

Although the term [{Xw g 0x{ui}] is discussed
above with reference to the CJS model it can be
any appropriate distribution describing a set of
encounter histories conditional on the first cap-
tures. Of the models currently in MARK, the term
[{Xw g 0x{ui}] is sufficiently general to describe the
following models: Recaptures only, Known fates,
Recoveries only, Both (Burnham), Both (Barker),

and Brownie et al. Recoveries. The Schwarz and
Arnason formulation thus provides a convenient
way of adding birth and population growth model-
ling to most of the open population models in
MARK, something currently only available for
"Popan" (Schwarz & Arnason, 1996) and "Pradel"
(Pradel, 1996) models. With appropriate modifica-
tion to the distribution [{ui}x{u.}] the model
[{Xw g 0x{ui}] could be the following models cur-
rently in MARK: Robust design, Multi–Strata Re-
captures only, Barker Robust Design, Multi–Strata
– Live and Dead Enc. All of these models can be
extended to model recruitment or growth simply
by adding to the likelihood the term [{ui}xu.] de-
scribing the distribution of the first captures condi-
tional on capture at least once during the study. A
complete description of the data requires the term
[u.xN] where N is the number of animals that were
ever available for capture during the experiment.
This term is included in the MARK "Popan" model
however Link & Barker (in press) show that for
open populations, this term is approximately ancil-
lary to the estimable parameters in the model; that
is, it contains virtually no information about the
estimable parameters. This provides justification
for omitting  [u.xN], the approach taken by Pradel
(1996). For closed populations the term must be
included in order to estimate N.

Currently, program MARK is structured so that a
distinct likelihood function is written for each model.
However, the ability to write the models in terms of
components of the sampling and demographic proc-
ess as described above for the Jolly–Seber model
suggests that it may be possible to customize the
likelihood function to recognize different types of
data and question. Future developments would not
need to re–derive existing components, but would
instead improve existing components or add new
ones. We envisage that a user would specify the
type and structure of data and indicate whether
modeling of births and abundances was of interest.
The appropriate [{Xw g 0x{ui}]  and [{ui}xu.] terms
would then be constructed based on option choices.

Construction of [{Xw g 0x{ui}]

The core component of the mark–recapture model
is the term [{Xw g 0x{ui}]. It is here that the key
information about the capture and survival proc-
esses is obtained from the data. This component
can also be factored and provides the key to
adding information from dead recoveries and
resightings.  The distribution of [{Xw g 0x{ui}] is the
product of multinomial factors with indices {ui} and
probabilities {Pr (Xwxui)}. An animal with encoun-
ter history w that was first caught at i, contributes
to [{Xw g  0 x{ui}]  through

Pr (history = wxfirst caught at i) = Pr (Xwxui).

If l indexes the sampling occasion when the ani-
mal was last caught, we can factor Pr (Xwxui) in
the CJS model into three parts:
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Pr (Xwxui) =
Pr (survival from sample i to lxfirst caught at l)
x Pr (recaptures and releasesxfirst caught at i and
  survival to l)
x Pr (not caught againxlast caught in sample l).

These terms also occur in joint live–dead models
(Burnham, 1993; Barker, 1997; Barker et al., in
press) with slight modification. For these models
and for some animals, we have the additional
information that they have survived beyond the last
capture period, at least until the last capture occa-
sion that defined the start of the interval in which
they were last resighted alive or were found dead. If
we index this occasion by l, and the sampling
occasion when the animal was first released by j,
then for the joint models we have the factorization:

Pr (Xwxui) =
Pr (survival from sample i to lxfirst caught at l)
x Pr (recaptures and releasesxfirst caught at i and
  survival to l)
x Pr (resightingsxfirst caught at i and survival to l,
  recapture and releases)
x Pr (encounter history after lxalive at time of sample l).

This represents the CJS model with an additional
factor for the resightings but with Pr (encounter
history after lxalive at time of sample l) replacing Pr
(not caught againxlast caught in sample l). This term
incorporates the contribution made by a dead recov-
ery or a live resighting in [l, l + 1).

The term Pr (recaptures and releasesxfirst
caught at i and survival to l) is the same as the
equivalent term in the CJS model if there is no or
random temporary emigration, but differs if there
is permanent emigration. The distinction between
the Barker model and the Burnham model is that
the latter does not include the resighting terms
and the recaptures term has been modified in the
Barker model to allow Markovian temporary emi-
gration.

We can write Pr (Xwxui) for the Barker or Burnham
models as the CJS model multiplied by

Pr (resightingsxfirst caght at i and survival to l,
    recapture and releases)

  Pr (encounter history after lx alive at time of sample l)
x
   Pr (not caught againxlast caught in sample l)

so, at least in principle, we can construct the Barker
or Burnham models from a core CJS model by
adding these factors.

Closed population models

To obtain closed population models, we need to
add the factors [u.xN] and [{uixu.}] to the
[{Xw g 0x{ui}]  core that forms the CJS model. Be-
cause the population is closed we also need the
constraints that the birth rates are all zero, the

survival probabilities one, and that all animal that
were ever in the study population were present at
the start of the study.  The CJS parameterization
of [{Xw  g 0x{ui}] is sufficiently general to accommo-
date behavior effects as these can be coded using
the design matrix. With an interface that allows
constraints to be made on main effects and inter-
actions for a multinomial logit link function, the
heterogeneity models of Agresti (1994) and Tjur
(1982) could also be fitted.

Generalization to robust design

To generalize the CJS core, or the Burnham &
Barker joint models, to robust design versions we
need to add a factor that describes captures and
recaptures of animals during the sequence of sam-
ples that together define primary sampling occa-
sion i. In the robust design, each of the capture
occasions indexed by i is subdivided into second-
ary occasions. If we let pij denote the probability of
capture in secondary occasion j (j = 1,…,J) of
primary occasion i then the probability pi = 1 – (1 –
 pi1) (1 – pi2)...(1 – piJ) corresponds to the capture
probability in the CJS model or the joint models of
Burnham and Barker. We can write:

[Secondary and primary recaptures]  =
[Secondary capturesxPrimary captures] x
x [Primary captures]

where [Primary captures] is the joint distribution of
the primary capture events (animal is caught at
least once in primary period i) and is governed by
the primary capture probabilities pi. To complete
the generalization we need to add the factor [{ui}xu.]
which introduces the birth and growth parameters
into the model if these are of interest. Kendall et
al. (1995) used this approach to develop the like-
lihood function for the robust design extension of
the CJS model except that instead of [{ui}xu.] they
add the factor  [{ui}x{Ui}] as in the Jolly–Seber
model.

Generalization to Multi–state models

As for the single–state case, the full multi–state
likelihood can be factored into three distinct parts:

[{XM
w}xN(.)] = [u.(.)xN(.)] x [{ui

(s)}xu.(.)] x [{Xw g 0}x{ui
(s)}]

where XM
w denotes the number of animals with the

multi–state encounter history w, N(.) is the number
of animals that were ever present in the population
during the study, u(.) is the number of unmarked
animals that were caught during the study and ui

(s) is
the number of unmarked animals caught in state s in
sample i. The term [{XM

w g 0}x{ui
(s)}] is the joint distri-

bution of the counts of the multi–state encounter
histories conditional on the numbers first caught at
each time and state. As such it represents any multi–
state model conditional on the first captures includ-
ing the Arnason–Schwarz (Schwartz et al., 1993)
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model, the memory model of Brownie et al. (1993)
and any extensions that include dead recoveries or
live resightings. As for the single–state model the
term [{ui

(s)}xu.(.)] contains the useful information about
changes in abundance and recruitment and provides
the means for adding these components to the
multi–state model.

The multi–state model written as above is not in
the form of an expression involving a CJS core with
a multi–state factor(s) added to the model. As an
alternative we can write:

 [{XM
w}xN(.)] =

= [u.(.)xN(.)] x [{ui
(.)}xu.(.)] x [{Xw g 0}x{ui

(.)}] x [XM
w g 0}x{Xw g 0}]

Here, Xw represents the encounter history collapsed
across the states and so the first three factors are
in the same form as the extended CJS model
discussed above. However, each of these factors
represent distributions that are complicated func-
tions of state–specific capture, movement and sur-
vival probabilities. Whether this is a productive
avenue to explore depends on how tractable these
expressions turn out to be. The advantage would be
that the full model can be built up from a CJS–type
core, however the functions at the heart of this core
will need to accept multi–state arguments.

Discussion

The development of general software that allows
biologists to focus on biological questions rather
than battle with technological limitations of data
analysis is important. We have outlined one ap-
proach to software development that may be use-
ful in this context. Regardless of the approach, key
issues that need to be addressed in future devel-
opments include the need for a suitable mecha-
nism for incorporating alternative model parameteri-
sations, multistate complications, handling large
numbers of nuisance parameters, and ability to
carry out hierarchical modelling.

A mechanism for offering alternative model
parameterisations is important because biologists
are often interested in estimating functions of
parameters. The invariance property of the maxi-
mum likelihood estimator (Cox & Hinckley, 1974)
means that it is easy to find the MLE and its
variance for a function of parameters. A second
reason for reparameterizing is that some param-
eter scales are more natural for introducing cer-
tain kinds of constraints. The programming prob-
lem is finding a compromise between having a
wide choice of parameter transformations and
the ease of use of the software. For example,
nonlinear constraints on parameters can be pro-
grammed using Lagrange multipliers, as in
POPAN (Arnason & Schwarz, 2002). However,
computer code for incorporating nonlinear con-
straints in this manner would require the parsing
of complicated algebraic expression making the
programming problem difficult.

The multistate model is an exciting model that
seems to present special difficulties (Lebreton &
Pradel, 2002). A particular problem is that the
likelihood function can have multiple–maxima, par-
ticularly when constraints are introduced into the
model. This problem is exacerbated by the very
large number of parameters for even moderately–
sized multistate problems making it difficult to ad-
equately explore the likelihood function graphically.
An advantage of the approach that we have out-
lined of partitioning the likelihood function into com-
ponents is that the likelihood function could be
optimised sequentially. This is the approach taken
by Schwarz & Arnason (1996) and if applied to the
multi–state model might make it easier to explore
the problem parts of the likelihood function.

A crucial issue is the management of a large
number of nuisance parameters. It is not difficult to
construct a model for data that has several hundred
parameters, many of which are of little interest to
the researcher. This problem is exacerbated if
unobservable and misclassified states are included
in the model (Kendall, 2004). These nuisance pa-
rameters are needed however to correctly specify
the model and to maximize the information that is
extracted from the data about the demographic
parameters. Because having many nuisance pa-
rameters causes reduced precision of parameter
estimates it is usually desirable to decrease their
number. The standard approach in mark–recapture
modeling is to use model–selection to reduce the
number of nuisance parameters. The main difficulty
with this approach is that there are often a large
number of plausible models with differing structure
imposed on nuisance parameters. The need to
carry out model–selection over these parameters is
a distraction from what should be the core focus of
model selection: exploring biologically interesting
hypotheses by comparing a small set of models
that have various restrictions on the demographic
parameters. An alternative could be to fit a very
general model with few restrictions on nuisance
parameters and then consider biological hypoth-
eses by restricting the demographic parameters. An
intermediate approach is the use of hierarchical
models in which nuisance parameters are modelled
as random effects; currently software that allows
this approach is only available for relatively simple
models such as the CJS model.

An alternative to reducing the number of nui-
sance parameters by restricting them is to elimi-
nate them entirely from the model. The elimination
of nuisance parameters is a well–known and diffi-
cult problem (see Berger et al., 1999 for a review).
This can be done by integrating the nuisance pa-
rameters out of the model; this is essentially a
Bayesian approach and can be done with respect to
a non–infomative prior distribution for the nuisance
parameters. Computationally this approach is pro-
hibitive for anything but very simple mark–recap-
ture models. Conditional likelihood can also be
used to eliminate nuisance parameters. This ap-
proach is suitable when components of the suffi-



184 Barker & White

cient statistics have conditional distributions that
depend only on the parameters of interest. The
simplest example where conditional likelihood is
used in mark–recapture analysis is the 2–sample
closed–population model Mt. Assuming that the
number of animals with the four possible capture
histories 11, 10, 01, and 00 are multinomial with
index N we can write:

where the sufficient statistics are ni, the number of
animals caught in sample i and m2, the number of
marked animals caught in sample 2. The
hypergeometric term represents the distribution
[m2xN] and does not depend on the nuisance pa-
rameters hence can be used as a conditional likeli-
hood. Conditional likelihoods have also been used
for modelling heterogeneity in closed populations
(Agresti, 1994; Tjur, 1982) and in the memory
model of Brownie et al. (1993). Conditional
likelihoods remain an interesting subject for re-
search but at present there is little scope for their
use in mark–recapture modelling.

For a variety of reasons, including those out-
lined above, we believe that hierarchical models
are going to become of increasing importance to
biologists. Programs such as MARK, POPAN,
SURGE and SURVIV, and the possible exten-
sions that we have outlined above code the like-
lihood function for specific situations. Construct-
ing likelihood functions for hierarchical models is
prohibitive in most cases because of the multi–
dimensional integrations required. An alternative
approach that has recently become popular is
vague prior Bayesian analysis based on McMC,
for example using program WinBUGS
(Spiegelhalter, 2000). In this approach a prior
distribution for parameters is specified, and this
distribution itself may have a so–called hyper–
prior distribution. Inference is made by summa-
rizing the posterior distribution which is approxi-
mated by Monte Carlo simulation. Simple models
such as the CJS model are easily coded in
WinBUGS, but it becomes more difficult for some
of the more complicated models. An alternative
to WinBUGS is to develop specific mark–recap-
ture code. For example, a HyperMARK module
could be developed that clips on a user–specified
prior distribution to the distributions used for
expressing the mark–recapture likelihood func-
tion. McMC could then be used to sample from to
sample from the posterior distribution. The key
issues here are (1) writing the HyerMARK code in
an efficient and user–friendly manner that makes
specification of biologically relevant models easy
and (2) the user would need to accept the logic of
Bayesian inference. If we can accept a vague

prior as a statement of knowledge about param-
eters before the experiment then the Bayesian
logic is impeccable, however the appropriate de-
scription of near–ignorance before an experiment
is carried out is controversial.
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