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Abstract
Methods for investigating parameter redundancy.— The quantitative study of marked individuals relies
mainly on the use of meaningful biological models. Classical inference is then conducted based on the
model likelihood, parameterized by parameters such as survival, recovery, transition and recapture
probabilities. In classical statistics, we seek parameter estimates by maximising the likelihood. However,
models are often overparameterized and, as a consequence, some parameters cannot be estimated
separately. Identifying how many and which (functions of) parameters are estimable is thus crucial not only
for proper model selection based upon likelihood ratio tests or information criteria but also for the
interpretation of the estimates obtained. In this paper, we provide the reader with a description of the tools
available to check for parameter redundancy. We aim to assist people in choosing the most appropriate
method to solve their own specific problems.

Key words: Mark–recapture data, Mark–recovery data, Profile–likelihood, Analytical–numerical method,
Symbolic algebra software.

Resumen
Métodos para investigar la redundancia de parámetros.— El estudio cuantitativo de individuos marcados se
basa fundamentalmente en el uso de modelos biológicamente significativos. Posteriormente, la inferencia
clásica se lleva a cabo a partir de la probabilidad del modelo, parametrizada mediante parámetros tales
como las probabilidades de supervivencia, de recuperación, de transición y de recaptura. En la estadística
clásica, intentamos obtener estimaciones de parámetros maximizando la probabilidad. Sin embargo, los
modelos a menudo se parametrizan en exceso, por lo que algunos parámetros no pueden estimarse por
separado. Por consiguiente, identificar qué parámetros, cuántos y qué funciones de los mismos son
estimables resulta crucial, no sólo para poder efectuar una adecuada selección de modelos basada en
pruebas de razón de verosimilitud o criterios de información, sino también para la interpretación de las
estimaciones obtenidas. En este trabajo presentamos una descripción de las herramientas disponibles para
verificar la redundancia de parámetros. Nuestro objetivo es ayudar a elegir el método más apropiado para
la resolución de sus problemas específicos.

Palabras clave: Datos sobre recaptura de marcas, Datos sobre recuperación de marcas, Probabilidad del
perfil, Método numérico analítico, Software de álgebra simbólica.
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hood of a redundant model can be expressed as a
function of fewer than the original number of param-
eters (Catchpole & Morgan, 1997). When CMR
protocols are considered, one is often faced with this
form of non–identifiability and that is probably the
reason why "non–identifiable" has been widely used
in place of "parameter redundant" in the literature.

To fix ideas, let us consider the standard mark–
recapture Cormack–Jolly–Seber (CJS) model with
K capture occasions. The raw encounter histories
can be fruitfully summarized in the so–called re-
duced m–array (Burnham et al., 1987, p.36) which
summarises the data in the form of the number of
individuals released per occasion i denoted Ri
(1 [ i [ K–1) and the number of first recaptures
given release at occasion i at the succeeding occa-
sions j (2 [ j [ K) denoted mij (table 1).

For instance, throughout this paper, we will con-
sider the well known Dipper example (Lebreton et
al., 1992). During the breeding season, over a
period of 7 years (1981–87), a total of 294 birds
were marked and resighted. The data are summa-
rized in table 2.

Conditioning on the releases and assuming in-
dependence among cohorts, the CJS model likeli-
hood can therefore be easily written down as a
product of multinomial probability distributions with
the m–array cell probabilities given in table 3 (e.g.
Lebreton et al., 1992).

For the CJS model, it is well known that the last
survival probability and the last recapture probability
cannot be estimated separately, only their product
being estimable (e.g. Lebreton et al., 1992). Be-
cause 2 and p3 only appear together in the cell
probabilities, the likelihood can be rewritten in terms
of 1, p2 and  = 2 p3 as shown in table 4.

Introduction

Capture–mark–recapture (CMR) models in the broad
sense include all the models developed to estimate
demographic parameters based on data from marked
animals. The initial papers are those of Cormack
(1964), Jolly (1965) and Seber (1965). Over the past
two decades, many improvements of the methods
have been provided, that have led to both a diversi-
fication and a generalization of the tools available.
We can now describe briefly the situation in this field
as follows: when the marked animals are recaptured
(or resighted) alive, the models used are "mark–
recapture" models stricto sensu. The parameters
estimated in this case are survival and capture
probabilities. For a thorough review of the develop-
ments of the method since the sixties, including
constancy over time, group effects, constraints on
the parameters, etc. see Lebreton et al. (1992). In
other cases, for example game species, the animals
are not seen again during their lifetime, but their time
of death is known. Brownie et al. (1990) provide a
clear review of many of the models that can be used,
called "mark–recovery" models. The parameters es-
timated are survival probabilities, and "return prob-
abilities", i.e. the probability that the mark of a dead
animal is found. See also the development in Free-
man & Morgan (1992). Integrated modelling of mark–
recovery and mark–recapture data is considered by
several authors, see e.g. Catchpole et al. (1998).

Models have also been developed to estimate
transition rates between sites or states jointly with
the survival probabilities, in either of the two main
situations above (Arnason, 1973; Schwarz et al.,
1993; Brownie et al., 1993). All these models have a
common structure and can be combined in the
framework of multi–state models, as has been shown
by Lebreton & Pradel (2002).

We shall here outline the common structure of
many CMR models. For details concerning the one–
site capture–recapture models, see Lebreton et al.
(1992). Let us call  the set of all the different
"encounter histories" that have been observed in a
data set. Let q denote the number of encounter
histories, i (i = 1,…, q) the i–th capture history, and
ni the number of animals with this encounter history.
The i constitute the q cells of a multinomial model
with individual probabilities i, where the i is the
probability of observing the encounter history i,
conditionally on the time of marking and first release
of the corresponding individuals. The i can be
expressed as functions of the parameters to esti-
mate survival and/or transition probabilities, capture
and/or return probabilities, etc. The likelihood of a
model L is proportional to the product of the i
namely . Estimating the parameters of the
model by the maximum likelihood method will thus
consist in finding the values of the parameters that
maximize L.

A model is defined to be identifiable if no two
values of the parameters give the same distribution
function. A particular case of non–identifiability usu-
ally occurs due to overparameterization. The likeli-

Table 1. The observed m–array for the CJS
model with 3 capture occasion: Ocr.
Occasions of release; Nr. Number released;
FRc. First recapture occasion; Ri. Number
released at occasion i; mij. Number of first
recaptures at occasion j, given release at
occasion i.

Tabla 1. Matriz m observada para el modelo
CJS con 3 capturas: Ocr. Lliberaciónes; Nr.
Cantidad de liberados; FRc. Primera ocasion
de recaptura; Ri. Número liberado en la oca-
sión i; mij. Número de primeras recapturas
en la ocasión j, cuando la liberación se ha
producido en la ocasión i.

       FRc

Ocr Nr 2 3

1 R1 m12 m13

2 R2 m23
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As a consequence, it has to be borne in mind
that both estimates of 2 and p3 cannot be sepa-
rately discussed, except under the form of their
product, otherwise one will certainly get mislead-
ing conclusions. E.g. for the Dipper data set,
maximum likelihood estimates (MLEs) for 6 and
p7, both equal to 0.728, were obtained both with
software MARK (White & Burnham, 1999) and M–
SURGE (Choquet et al., 2003), resulting in a MLE
for the product equal to 0.53. In fact, infinitely
many other combinations also work e.g. 6 and p7
equal respectively to 0.59 and 0.9. In this particu-
lar case, one should not look for a complex expla-
nation of a decrease in the survival probability at
the end of the study, but rather, consider it as an
artefact due to the redundancy.

Moreover, model selection is often achieved in
capture–recapture studies via the Akaïke informa-
tion criterion (AIC), as recommended by Burnham
& Anderson (1998). This criterion is:

 AIC = –2 log (Lmax) + 2 np

where Lmax is the maximum likelihood, and np is the
number of estimable (functions of) parameters. To
calculate this criterion in the CJS case, one has to
subtract one from the total number of parameters in
order to obtain the number of actually estimable
parameters. Consequently, a naive computation of
the number of parameters may lead to a wrong
AIC–ranking of the models.

Determining how many and which functions of
the original parameters are estimable is thus cru-
cial in model selection and in the interpretation of
estimates. Two questions naturally arise, and we
will focus on them in the next section:

Question 1 (Q1) – How many parameters are
estimable? This number is called the rank of the
model.

Table 2. The m–array of the Dipper data set.
In 1981, 22 birds were released among which,
11 were first recaptured in 1982, 2 in 1983,
and 9 (= 22 – 11 – 2) were never observed
again: Yr. Year of release, Nr. Number
released; YFRr. Year of first recapture.

Tabla 2. Matriz m para los datos del Mirlo
acuático. En 1981, se libararon 22 aves de
las cuales 11 fueron recapturadas por prime-
ra vez en 1982, 2 en 1983 y 9 no sa han
vuelto a observar: Yr. Año de liberación; Nr.
Cantidad liberada; YFRc. Año de la primera
recaptura.

YFRc

Yr Nr 1982 1983 1984 1985 1986 1987

1981 22 11 2 0 0 0 0

1982 60 24 1 0 0 0

1983 78 34 2 0 0

1984 80 45 1 2

1985 88 51 0

1986 98 52

Table 3. The m–array cell probabilities for the
CJS model with 3 capture occasions: Ocr.
Occasion of release; Nr. Number released;
FRc. First recapture occasion; i. Survival
probability between i and i + 1; pj. Detection
probability at occasion j.

Tabla 3. Probabilidades de las celdas de la
matriz m para el modelo CJS con 3 ocasio-
nes de captura: Ocr. Lliberación; Nr. canti-
dad de liberados; FRc. Primera ocasión de
recaptura; i. Probabilidad de supervivencia
entre i e i + 1; pj. Probabilidad detectada en
la ocasión j.

                         FRc

Ocr Nr 2 3

1 R1 1 p2 1 (1 – p2) 2 p3

2 R2 2 p3

Table 4. The re–parameterization of the m–
array cell probabilities for the CJS model
with 3 capture occasions: Ocr. Occasion of
release; Nr. Number released; FRc. First
recapture occasion; i. Survival probability
between i and i + 1; pj. Detection probability
at occasion j.

Tabla 4. Reparametrización de las probabilida-
des de las celdas de la matriz m para el
modelo CJS con 3 ocasiones de captura. Ocr.
Liberación; Nr. Cantidad de liberados: FRc.
primera oportunidad de recaptura; i. Proba-
bilidad de supervivencia entre i e i + 1; pj.
Probabilidad detectada en la ocasión j.

         FRc

Ocr Nr 2 3

1 R1 1 p2 1 (1 – p2) 

2 R2
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Question 2 (Q2) – Which parameters are esti-
mable?

In the preceding didactic example, the conclu-
sions could have been reached by visual inspec-
tion, trying to find the parameters which appear
only together. However this approach becomes in-
tractable for complex models.

Additionally, parameter redundancy is not al-
ways intuitive. Indeed the common belief that
parameter redundancy is the result of "too many"
parameters can be completely misleading. A good
example occurs in modelling data from mark–
recovery studies of animals banded at birth. The
so–called Seber model (Seber, 1971) has a fully
age–dependent survival and a constant recovery
probability, with no time dependence in survival or
recovery probabilities. This model is parameter
redundant, and yet when extra parameters are
added by allowing first–year survival to be time
dependent, the model becomes non redundant
(for details see Morgan & Freeman, 1989; Catch-
pole et al., 1996).

Another issue arises demonstrating that there ex-
ists no simple "rule of thumb" that allows us to
compute the number of non redundant parameters in
a model. When constraints are used on the param-
eters, the number of non redundant parameters may
depend on the type of link function that is used.
Viallefont (1995) illustrated such a situation with group
dependence (see also Catchpole et al., 2002).

What precedes is an inherent model property,
called intrinsic redundancy. Such a situation can be
detected a priori, by methods allowing us to detect
redundancy problems in the structure of a model,
independently for any specific data set. It could
also be detected a posteriori, i.e. after fitting the
model to the data set of interest.

However, there exists a second sort of redun-
dancy, called extrinsic redundancy, due to a par-
ticular structure of the data, usually missing or
sparse data. E.g. it may happen that no individuals
are detected at time i, inducing the redundancy of

i–1 and i, with only the survival probability be-
tween i – 1 and i + 1 being estimable. Such redun-
dancy can only be detected "a posteriori", i.e. when
the model has been fitted to the specific data set for
which the problem appears.

The purpose of this paper is to provide the
reader with the tools available to check for intrin-
sic and extrinsic parameter redundancy and to
choose the most relevant method to solve their
own problems. In the next section, we review the
procedures available for checking for parameter
redundancy,  giving explanations and illustrations.
Four approaches are considered and illustrated
with the CJS model in conjunction with the Dipper
data. We emphasize relative drawbacks and ad-
vantages and provide recommendations concern-
ing parameter redundancy for the user of models
for marked individuals.

Methods to check for parameter–
redundancy

To our knowledge, there exist four different meth-
ods that can be used to detect parameter–redun-
dancy. Table 5 presents these methods according
to their ability to detect a priori intrinsic redun-
dancy, or a posteriori both types of redundancy,
and to answer Q2. The first two methods are more
"intuitive", a posteriori methods, whereas the next
two methods are more appropriate to a priori detect
intrinsic redundancy problems.

Table 5. Summary of the conditions of use and relative advantages of the four methods proposed.
For details see the text.

Tabla 5. Resumen de las condiciones de uso y ventajas relativas de los cuatro métodos propuestos.
Para detalles al respecto ver el texto.

Name of                 Detection of              Detection of                Necessary Answer
the method        intrinsic redundancy   extrinsic redundancy           software to Q2

Profile Possible on Yes Any CMR software for No
likelihood simulated data "by hand" plots;

routinely implemented
 in M–SURGE

The Hessian Possible on Yes Implemented in No
simulated data MARK, M–SURGE

Simulation Simulated data No RELEASE (see also MARK) Partial
with large numbers  for computation of expected

released numbers and any CMR software
for the optimization step

The formal Yes Yes MAPLE or MATHEMATICA Yes
derivative matrix



Animal Biodiversity and Conservation 27.1 (2004) 565

Profile likelihood

This a posteriori method is based on the fact that
redundancy results in a flat ridge in the likelihood,
hence inducing an infinity of solutions. The redun-
dancy can thus be shown by plotting the profile
likelihood i.e. the likelihood as a function of a
parameter of interest and simultaneously maxi-
mized over the other parameters (e.g. Freeman et
al., 1992; Lebreton & Pradel, 2002).

This method is normally used a posteriori, i.e. on
a given data set with a given model, and more
specifically it is used to detect problems concerning
a specific subset of parameters. One needs first to
have an idea of which parameters are redundant.
For example, if in two quite close models, very
different estimates are found for one parameter,
this may mean that it is redundant.

This method can also be used a priori on simu-
lated data to detect intrinsic redundancy, or to
distinguish between extrinsic and intrinsic redun-
dancy problems: indeed, an intrinsic problem is
model–dependent and remains so whatever the
data set used, whereas an extrinsic problem is due
to the structure of a specific data set, and disap-
pears if a simulated data set with a different
structure is used.

For the Dipper example, graphs of the profile
deviance are shown in figure 1. Several model–
fitting steps are necessary, with different fixed val-
ues at each time for the parameter under investiga-
tion. Then the different deviance values are plotted
against the corresponding fixed value of the param-
eter. If the parameter is estimable uniquely by
maximum likelihood, for example 1, one will get a
higher deviance for any value of this parameter
other than the MLE. On the contrary, if the param-
eter is not estimable, e.g. p7, one will get a flat ridge
according to the direction of this parameter. Actu-
ally, this flat ridge does not extend completely from
0 to 1. In this example, because we have to deal
with probability, once the value of p7 has been fixed
between 0 and 1, the value of 6 has to be between
 = 6 p7 and 1, otherwise the deviance is no longer

constant, but as long as the ridge exists in the
neighbourhood of the MLE, the concerned param-
eter must be considered redundant. Further detail
on the extent of a ridge in the context of Seber’s
mark–recovery models is given in Catchpole et al.
(1993) and Catchpole & Morgan (1994).

This method can be used "by hand" with any
CMR software, while the program M–SURGE can
automatically give the plot of profile deviance.

Applications can be found in Viallefont (1992),
Freeman & Morgan (1992), Catchpole et al. (1993),
Catchpole & Morgan (1994), Lebreton & Pradel
(2002), Pradel et al. (in prep.) and Gimenez et al.
(submitted).

This method is a graphical diagnostic only of the
model parameter redundancy. It should not be used
systematically, which would necessitate drawing as
many graphs as there are parameters in the model,
which would be very time–consuming.

The Hessian

This a posteriori method is based on detecting zero
eigenvalues of the matrix of the second derivatives
of the log–likelihood with respect to the parameters
—namely the Hessian matrix— evaluated at the
MLE. The model rank is computed as the number
of non–zero eigenvalues (Viallefont et al., 1998) i.e.
the numerical rank of the Hessian (the number of
linearly independent rows). It is also possible to
determine the parameters that are separately esti-
mable by computing the eigenvectors associated
with the zero eigenvalues and identifying their null
co–ordinates (Reboulet et al., 1999).

For the Dipper example, the 12 x 12 Hessian
matrix and the associated eigenvalues are given in
table 6. The eigenvalue in bold is close to zero
meaning that the model rank equals 11. Out of the
12 original parameters, only 11 are estimable, con-
firming what is known about the CJS model. In
addition, by considering the entries in the eigenvector
corresponding to the smallest eigenvalue, it is con-
firmed that only the last survival and capture prob-
abilities are redundant parameters (values in bold).

This method should be used cautiously because:
(1) as with any a posteriori method, it does not
distinguish between intrinsic and extrinsic redundancy,
thus it does not allow generalisation of the results
found for one specific data set to other data sets with
the same structure mode; (2) it requires the Hessian
matrix, which is often done numerically through an
approximation via a finite difference scheme; and (3) a
perfect tuning of a zero threshold value probably does
not exist (Viallefont et al., 1998).

Fig. 1. Profile deviance for two parameters of
the CJS model: application to the Dipper
data set.

Fig. 1. Desviación del perfil para dos
parámetros del modelo CJS: aplicación al con-
junto de datos del Mirlo acuático.
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Moreover, using this method without caution in-
duces another problem when some parameters are
estimated at a boundary value of the parameter
interval. For example, if one of the survival prob-
abilities is estimated at the value of one or zero, the
numerical computation of the Hessian by finite
differences may induce one eigenvalue of this ma-
trix to be null, thus leading to counting the corre-
sponding parameter as if it was not separately
estimable, whereas it obviously is (with a value at a
boundary).

Despite all these problems, this numerically trac-
table method has been implemented extensively in
the mark–recapture software SURGE (Viallefont et
al., 1998; Reboulet et al., 1999), MARK (White &
Burnham, 1999) and M–SURGE (Choquet et al.,
2003). We advise the reader to be very careful
when using MARK, where a wrong computation of
the number of independent parameters in the mod-

els can lead to an unreliable ordering of the models
via AIC. When using M–SURGE, the first deriva-
tives are analytically computed which improves the
precision.

Simulation

The first step of the simulation method (also called
the analytical–numerical method) generates an ar-
tificial data set, by assuming a (realistic) set of
parameter values and (large) ringing numbers, and
then using the model to generate expected encoun-
ter histories. In a second step, this generated data
set is analyzed with the model of interest using
standard software such as MARK, M–SURGE,
SURVIV (White, 1982) or MSSURVIV (Hines, 1994).
For large numbers of released individuals per occa-
sion, the MLEs and standard errors produced are
approximately the expected values of the param-

Table 6. Numerical diagnostics for CJS model parameter redundancy with the Dipper data set.

Tabla 6. Diagnósticos numéricos para la redundancia de parámetros en el modelo CJS con el conjunto
de datos del Mirlo acuático.

Hessian matrix computed by a finite difference scheme

2.524   0.779 0.027 0.001 0.000 0.000 1.343 0.055 0.002 0.000 0.000 0.000

0.779 14.478 0.495 0.019 0.001 0.000 –0.542 1.022 0.031 0.002 0.000 0.000

0.027 0.495 18.485 0.716 0.046 0.001 –0.019 –0.468 1.166 0.075 0.004 0.001

0.001 0.019 0.716 17.067 1.100 0.028 –0.001 –0.018 –0.662 1.790 0.084 0.028

0.000 0.001 0.046 1.100 20.076 0.503 –0.000 –0.001 –0.043 –1.017 1.528 0.503

0.000 0.000 0.001 0.028 0.503 8.325 –0.000 –0.000 –0.001 –0.025 –0.485   8.325

1.343 –0.542 –0.019 –0.001 –0.000 –0.000 2.407 –0.038 –0.001 –0.000 –0.000 –0.000

0.055 1.022 –0.468 –0.018 –0.001 –0.000 –0.038    1.035 –0.029 –0.002 –0.000  –0.000

0.002 0.031 1.166 –0.662 –0.043 –0.001 –0.001 –0.029 1.965 –0.069 –0.003 –0.001

0.000 0.002 0.075 1.790 –1.017 –0.025 –0.000 –0.002 –0.069 3.008 –0.077 –0.025

0.000 0.000 0.004 0.084 1.528 –0.485 –0.000 –0.000 –0.003 –0.077 2.042 –0.485

0.000 0.000 0.001 0.028 0.503 8.325 –0.000 –0.000 –0.001 –0.025 –0.485   8.325

Hessian eigenvalues    Eigenvector associated with the null eigenvalue

  0.00000364 –3.484365e–18 1

  0.94321127   1.371273e–16 2

  1.05686038 –8.138873e–17 3

  1.85022632   2.486811e–17 4

  1.87616909   6.028106e–17 5

  2.70801343 –7.071068e–01 6

  3.80631847   8.958153e–19 p2

14.56896925 –1.775061e–15 p3

16.52430693   2.851347e–16 p4

16.87618746   2.764039e–16 p5

18.83059874   5.154638e–17 p6

20.69498495   7.071068e–01 p7
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eter estimators and their standard errors. If a pa-
rameter estimator is unbiased to the 5th decimal
place and has a coefficient of variation less than
100%, then it is declared estimable (Kendall &
Nichols, 2002).

For the CJS model example for the Dipper study,
we used Ri = 10,000 for all i and parameter values
shown in table 7. The resulting expected m–array
values are given in table 7. Using SURVIV e.g., we
analyze these data fitting the CJS model. The results
in table 8 suggest that all parameters are estimable
except for 6 (biased estimate) and p7 (biased esti-
mate and large coefficient of variation).

Recent applications can be found in Schaub et
al. (2004) and Kendall & Nichols (2002).

This method can be used as a completely a
priori method, to investigate the intrinsic redun-
dancy of a model, by generating the simulated
data set with arbitrarily fixed values of the model
parameters. Note however that the ringing num-
bers used in the simulation should be large enough
to ensure that there are no zero cells in the m–
array, to ensure that any redundancy found must
be intrinsic. However, it is also often used a
posteriori, using the point estimates obtained to
generate the simulated data. The investigation of
the extrinsic problems of redundancy (i.e. due to
the data) cannot be assessed by this method,
because it relies on the data set being very large,
which requires simulated rather than actual data.

Also, the simulation method is only valid for the
particular values of the parameter that are chosen
to compute the expected probabilities. We recom-
mend using several set of different values to be
sure that you do not have to deal with a very
particular case (a model conditionally of full rank
i.e. a model of full rank, but parameter redundant

for one or several values of the parameters). For
the Dipper example, we tried several sets of differ-
ent values for the parameters and were led to the
same conclusions.

Table 7. Expected m–array using Ri = 10,000 for all i and the parameter values 1 = 0.4; 2 = 0.5;

3 = 0.6; 4 = 0.6; 5 = 0.7; 6 = 0.7; p2 = 0.9; p3 = 0.9; p4 = 0.9; p5 = 0.9; p7 = 0.7. Values are
rounded to the nearest integer: YFRc. Year of first recapture; Yr. Year of release; Nr. Number
released.

Tabla 7. Matriz m esperada utilizando Ri = 10.000 para todos los i y los valores paramétricos 1 = 0,4;

2 = 0,5; 3 = 0,6; 4 = 0,6; 5 = 0,7; 6 = 0,7; p2 = 0,9; p3 = 0,9; p4 = 0,9; p5 = 0,9; p7 = 0,7. Los valores
se redondean al número entero más próximo: YFRc. Año de la primera recaptura; Yr. Año de
liberación; Nr. Cantidad liberada.

             YFRc

  Yr Nr 1982 1983 1984 1985 1986 1987

1981 10,000 4,900 756 38 2 1 1

1982 10,000 3,600 180 11 1 1

1983 10,000 4,500 270 16 1

1984 10,000 5,400 324 29

1985 10,000 5,400 480

1986 10,000 8,000

Table 8. MLEs obtained from the simulated
data of table 6: P. parameters; MLEs.
Maximum likelihood values; SE. Standard
error; B. Bias; Cv. Coefficient of variation (%).

Tabla 8. MLE obtenidos a partir de los datos
simulados de la tabla 6: P. Parametros; MLEs.
Valores de probabilidad máxima; SE. Error
estandar; B. Sesgo; Cv. Coeficiente de varia-
ción (%).

P     MLEs   SE          B     Cv

1 0.700 0.078 0 0.11

2 0.400 0.070 –0.00001 0.17

3 0.500 0.072 –0.00000 0.14

4 0.600 0.071 –0.00000 0.12

5 0.600 0.070 –0.00000 0.12

6 0.894 0.067 0.19442 0.07

p2 0.700 0.092 0.00000 0.13

p3 0.900 0.080 0.00002 0.09

p4 0.900 0.073 0.00002 0.08

p5 0.900 0.070 0.00001 0.08

p6 0.900 0.065 0.00001 0.07

p7 0.894 225.184 0.19442 251.76
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Given that the variances computed by SURVIV
should not be trusted when one or several param-
eters are redundant in the model (Hines, pers. com.),
we greatly encourage using MARK or M–SURGE
which are more reliable in computing the Hessian
matrix. Of course, generating all possible encounter
histories for a large fixed number of capture occa-
sions, and then writing down their expected values
under a complex model, can quickly become time–
consuming and often intractable. Note however that
simulations of the CJS model can be conducted with
program RELEASE which can be used as a
standalone application (Burnham et al., 1987) or
found as part of program MARK.

Finally, it is important to notice that this method
also allows us to study relevant statistical quanti-
ties, such as bias, precision of estimators, or power
of likelihood–ratio and goodness–of–fit tests
(Viallefont et al., 1995; Pollock et al., 1985).

The formal derivative matrix

This a priori method is based on the analytical
computation of the matrix D of derivatives of the
vector of the multinomial distribution cell prob-
abilities with respect to the vector of model pa-
rameters. This method gives the answer to both
Q1: the number of estimable parameters is the
symbolic row rank of D, and Q2: the estimable

(functions of) parameters are the formal solu-
tions of a system of partial differential equations
(PDEs). The successive steps required to per-
form this method are shown in table 9 and will
now be detailed using the CJS model example in
conjunction with the Dipper data set. Symbolic
calculus software such as Maple or Mathematica
can be used at each step to greatly ease the
mathematical burden.

Intrinsic parameter–redundancy

The first step requires forming the vector q of
original parameters and a vector m of m–array cell
probabilities under the CJS model. In both vectors
the order is arbitrary. We choose

 = ( 1,..., 6, p2,...,p7)
T

and   m = ( 1p2, 1(1 – p2) 2p3,..., 6p7)Τ

Then, step 2, we calculate the symbolic derivative
matrix D of log( ) with respect to q. The result is:
Then the answer to Q1 (step 3) is simply the sym-
bolic rank of D which can be easily obtained, again
with Maple or Mathematica. For the CJS model, we
find a deficiency of 1 i.e. a rank equal to 11. The
eigenvector corresponding to the zero eigenvalues
is (step 4)

Table 9. Different steps required to perform the formal method.

Tabla 9. Distintos pasos requeridos para ejecutar el método formal.

Steps Mathematical objects and notation

1. Write down the vector of log–probabilities Vector of parameters:
    as a function of parameters

Vector of log–probabilities:

2. Differentiate formally log ((µ( )) The derivative matrix:
    wrt the components of 

3. Determine the number q of estimable Symbolic rank of the derivative matrix:
   parameters: if q < p the model is parameter r = rank (D)
   redundant then go to step 4, otherwise
   the model is of full rank

4. Write down formal solutions of: i (θ)T D(θ) = 0,       i = 1,...,d

5. Determine position i1,...,is of 0 The s separately non–redundant parameters:
   in common to all s

6. Write down the system of partial The system of PDEs:
   differential equations and solve it formally
   to obtain the estimable functions     j = 1,...,d
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Since this (sole) eigenvector has zeroes in all
entries except those corresponding to 6 and
p7, all parameters except those two are esti-
mable step 5). To determine the full set of
estimable functions, step 6 requires the solu-
tion of the following partial differential equa-
tion (PDE):

The solutions of this PDE are 1, 2, 3, 4, 5
and p2, p3, p4, p5, p6 and the product 6 p7.

Extrinsic parameter–redundancy

What precedes deals only with inherent proper-
ties of the CJS model. If the behaviour of param-
eter estimates is needed, one has to take the
data into account. By considering non–structural
zeroes i.e. missing data in the m–array, it is easy
to adjust the method for checking for extrinsic
parameter redundancy. One has just to modify

step 1 by forming a vector m of m–array cell
probabilities incorporating only the probabilities
corresponding to non–zero mij (cell probabilities
corresponding to zero mij do not play any role in
building the likelihood, since they are raised to
the power zero).

With the Dipper data set, there is a substantial
amount of missing data, so that only 11 cells do
not contain missing data (see table 2); m12, m13,
m23, m24, m34, m35, m45, m46, m47, m56 and m67.
The expression of the derivative matrix D is sim-
pler, consisting of just 11 of the columns of the
previous D, but its rank still remains equal to 11
so that in this case the missing data do not
render any extra parameters redundant.

Recent applications can be found in Schaub et
al. (2004). Other examples with more details
about the theory and references can be found for
single–state models in Catchpole et al. (2002)
with associated Maple code freely available from
http://www.ma.adfa.edu.au/~eac/Redundancy/Ma-
ple and for multistate capture–recapture models
in Gimenez et al. (2003), for which Maple code is
freely available from ftp://ftp.cefe.cnrs–mop.fr/bio/
PRM.

where  = 1 – pj, j = 2,...,7

http://www.ma.adfa.edu.au/~eac/Redundancy/Maple
http://www.ma.adfa.edu.au/~eac/Redundancy/Maple
ftp://ftp.cefe.cnrs�mop.fr/bio/PRM.
ftp://ftp.cefe.cnrs�mop.fr/bio/PRM.
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Discussion

The four methods all give some information about the
redundant parameters in a particular model or for the
case when that model is fitted to a specific data set.
They should be used in preference to any "rules of
thumb". If, using one of these methods, the number of
non–redundant parameters in a model is known with
certainty, then information criteria can safely be com-
puted. Otherwise, it is advisable to use the value
automatically computed with the Hessian method by
software such as MARK or M–SURGE. It has to be
noted that the intrinsic number of non–redundant
parameters is known for many models (Lebreton et
al., 1992 for CJS–type models; Gimenez et al., 2003
for multistate models; see also Viallefont, 1995; Kendall
& Nichols, 2002; Schaub et al., 2004). Hence, if the
Hessian method yields different results, the structure
of the data has to be checked to determine whether
extrinsic reasons induce redundancy.

Another easy way to count the number of non–
redundant parameters is the simulation method.
But, both the Hessian and simulation methods may
be flawed by numerical issues, such as deciding
what "close to zero" means. There is a slight advan-
tage of the simulation method as it does give an
immediate answer to the question: "Which param-
eters are not separately estimable?" (e.g. 6 and p7
in the CJS model with the Dipper example). Con-
cerning the Hessian method, the variance of the
redundant parameters is not always very different
from that of the separately estimable parameters,
and some insight in the eigenvectors is thus re-
quired.

Knowing which parameters are not separately
estimable only constitutes a partial answer to Q2 in
the introduction of this paper. In the Dipper example,
only the formal method yields the information that
the product 6 p7 is estimable, rather than any other
function of these two parameters. Hence, only the
formal method gives the full answer to Q2.

To make efficient use of the profile–likelihood
method, one needs to have an idea about which
parameters might be redundant, in other words,
one should have an idea of the "partial answer" to
Q2. The profile–likelihood is then an easy–to–use
method, but the results only apply to the param-
eters for which the profile–likelihood plot has been
drawn. To obtain a complete answer to Q1 with this
method, one needs to plot the profile–likelihood for
all the parameters, which will be very time–con-
suming in many cases.

Even if a model is non–redundant, difficulties in
estimation can occur because of local minima
(Lebreton & Pradel, 2002) or duality phenomena
(Pradel et al., in prep.) when two different estimates
of the same parameters can give the same value of
the smallest deviance (this is a case of non–identi-
fiability). In such cases, a graph of the profile–
deviance can add valuable information.

While building the profile deviance for a param-
eter, it is also quite easy to derive at the same time
profile–deviance–based confidence intervals which

are known to be more robust than the classical
Wald confidence interval with boundary estimates
(Catchpole & Morgan, 1994 for mark–recovery
models; Gimenez et al., submitted for multistate
mark–recapture models).

To know a priori the intrinsic number of estimable
parameters in a model, all four methods proposed
here may be used on simulated data for the profile–
likelihood, the Hessian or the analytical–numerical
methods: it is then advisable to generate two or
more data sets to check that the result is not due to
a special case in the simulated data.

The formal method that does not require any
simulated or expected data is not only more reliable,
but also the only one to provide a clear answer to Q2.

Moreover, having worked out a particular case
(e.g. CJS with 3 capture occasions) it is often
possible to extend the conclusions to larger exam-
ples with the same structure (i.e. more years of
data) without having to repeat the analysis (e.g.
Catchpole & Morgan, 1997, 2001; Gimenez et al.,
2003). We are currently trying to extend these ideas
in order to provide a taxonomy of intrinsic redun-
dancy of many standard models.

We thus advise anyone wanting to develop new
models for the analysis of marked data to use the
formal method to assess the properties of the new
model they develop.

Clearly, it requires the use of specific software
and some knowledge of algebra. We hope to see
an automatic implementation in standard CMR
software in the near future. Pending this progress,
we anticipate that in the near future, combining
the formal method with other methods will be
important. It could be the way to go towards a
reliable routine computation of numbers of estima-
ble parameters. Such an approach is adapted in
program M–SURGE where the first derivatives are
analytically computed. A second example is given
by Choquet & Pradel (unpublished results). They
developed practical rules in order to simplify the
structure of derivative matrix D which makes cal-
culation of the formal rank easier.

From a Bayesian perspective, maximum likeli-
hood theory is equivalent to finding the mode of the
joint posterior distribution of the parameters, given
uniform priors. Since Bayesians usually examine
posterior means, rather than modes, issues of pa-
rameter redundancy are not apparent, and might
well be thought to be of no importance. If there is
parameter–redundancy, then the likelihood surface
is flat, however if a Bayesian approach is adopted,
then the posterior can result in remarkably precise
estimators. This is investigated and explained in
Brooks et al. (2000) for a particular example. In
their case, Brooks et al. were aware that the ridge
existed, but one could envisage examples arising
when that was not the case. It is therefore impor-
tant to be aware of parameter redundancy. Barry et
al. (2000) found that the existence of parameter
redundancy can have substantial impact on poste-
rior means and standard deviations. Carlin & Louis
(1996, p. 203) recommend against the use of Markov
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chain Monte Carlo methods in the presence of
parameter redundancy.

Knowing that a model is full–rank may not be
enough. This has been shown by Catchpole et al.
(2001). It is shown there that if a full–rank model
has a parameter–redundant sub–model, and is in-
sufficiently different from that submodel, then it
may perform badly in practice. Thus in practice one
should think carefully about the models to be used,
and make use of whatever knowledge and general
results that are available (see, eg., Catchpole et al.,
1996). Even though a model may be full–rank, it
can still be useful to check the values of the
eigenvalues. This then produces a kind of synthesis
of intrinsic and extrinsic procedures.

As a conclusion, the choice between methods
clearly depends on the purpose of the study. As the
tools presented here are enough to tackle all sorts
of problems concerning parameter redundancy, we
do hope that people will use them, in order to
ensure valid biological conclusions.
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