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Abstract 
Effects of the invasive crayfish Procambarus clarkii on growth and development of Pelophylax perezi tadpoles 
in field conditions. Introduced predatory aquatic invertebrates may contribute to the global decline of amphibians 
as their larval are extremely vulnerable to predators. The objective of this study was to examine the effects of 
the predatory invasive crayfish Procambarus clarkii on the growth and development of native Iberian green frog 
tadpoles, Pelophylax perezi, in field conditions. We hypothesized that P. clarkii might affect P. perezi development 
by (a) inducing a delay in its metamorphosis and (b) reducing survival and mass of metamorphs. The experiment 
was developed in two ponds (with and without P. clarkii’s presence) in the Natural Park of Aiguamolls de l’Empordà 
(NE of the Iberian Peninsula). For each pond, groups of 10 tadpoles were randomly assigned to 15 cylindrical field 
enclosures. These enclosures avoided direct contact (i.e. predation) between both species. Our results suggest 
that, in field conditions, the presence of P. clarkii accelerates metamorphosis of P. perezi tadpoles. The higher 
growth rate of P. perezi through shorter larval periods could be the result of behavioural plasticity in response 
to the strong pressure imposed by P. clarkii. This conclusion would be in accordance with the hypothesis that 
phenotypic plasticity plays an important role in the conservation of P. perezi in front of biological invasions. 
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Resumen
Efectos del cangrejo exótico, Procambarus clarkii, en el crecimiento y el desarrollo de los renacuajos de Pelophylax 
perezi en condiciones de campo. Los invertebrados acuáticos depredadores introducidos pueden contribuir a 
la disminución general de los anfibios, cuyas larvas son extremadamente vulnerables a los depredadores. El 
objetivo de este estudio fue examinar los efectos del cangrejo exótico, Procambarus clarkii, en el crecimiento y 
el desarrollo de los renacuajos de la rana verde ibérica (Pelophylax perezi) en condiciones de campo. Concre-
tamente, planteamos la hipótesis de que P. clarkii podría afectar al desarrollo de P. perezi de dos formas: (a) 
induciendo un retraso en su metamorfosis y (b) reduciendo la supervivencia y la cantidad de renacuajos en fase 
de metamorfosis. El experimento se realizó en dos estanques (con y sin presencia de P. clarkii), en el Parque 
Natural Aiguamolls de l’Empordà (NE de la península ibérica). En cada estanque se introdujeron aleatoriamente 
grupos de 10 renacuajos en 15 cilindros cerrados de malla. Estos cilindros evitaron el contacto directo (es decir, 
la depredación) entre ambas especies. Nuestros resultados sugieren que, en condiciones de campo, la presencia 
de P. clarkii podría acelerar la metamorfosis de los renacuajos de P. perezi. La plasticidad en el comportamiento 
de P. perezi como respuesta a la fuerte presión ejercida por P. clarkii permite acelerar la tasa de crecimiento 
reduciendo los períodos larvales. Además, este estudio avalaría la hipótesis de que la plasticidad fenotípica 
juega un papel importante en la conservación de P. perezi frente a las invasiones biológicas.
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Introduction

Global change, including biological invasions, habi-
tat fragmentation and destruction, acidity, pollution 
(such as insecticides and herbicides) and emerging 
infectious diseases, is known to be causing am-
phibian declines worldwide (Houlahan et al., 2000; 
Saura–Mas et al., 2002; Collins and Storfer, 2003; 
Kats and Ferrer, 2003; Stuart et al., 2004; Hayes 
et al., 2010). It is difficult to determine the exact 
causes of the decline in amphibian populations as 
their demography is characterized by fluctuations 
in the number of individuals due to their biological 
dependence on environmental conditions and their 
meta–population traits. However, the joint action of 
natural fluctuations in populations’ and anthropogenic 
might result in local extinction more easily than either 
alone (Pechmann et al., 1991). Biological invasions 
are a major factors in global change due to their 
effects on the natural ecosystems (Vitousek et al., 
1996; Garcia–Berthou, 2010; Simberloff et al., 2013). 
Humans have deliberately introduced animals outside 
their natural range for a variety of motives (commer-
cial and non–commercial). As a result, allochthonous 
species often cause declines and even extinctions of 
native amphibian populations around the world (Carey 
et al., 2003; Lever, 2003). 

Invasive species can affect amphibians in aspects 
such as predation, competition, parasitism, and  habitat 
disruption. The bullfrog (Lithobates catesbiana) is a 
native of North–America and considered to be one of 
the most harmful invasive species worldwide since it 
negatively affects native amphibians through competi-
tion and predation (Kats and Ferrer, 2003; Beebee and 
Griffiths, 2005; GISD, 2018). Other invasive species 
such as introduced predatory aquatic invertebrates and 
fishes are a concern for amphibian populations and 
may contribute to global amphibian decline because 
larval amphibians are extremely vulnerable to verte-
brate and invertebrate predators (Alford and Richards, 
1999). In recent years, one of the most important pests 
in Iberian Peninsula wetlands, streams and ponds 
has been the crayfish Procambarus clarkii, which has 
affected the ecosystem dynamics and caused large 
socio–economic damage, mainly to rice fields in these 
areas (Beja, 1996; Gutiérrez–Yurrita, 1997; Twardoch-
leb et al., 2013; Carreira et al., 2014). P. clarkii is a 
native of North–America and it has become invasive 
in many continental aquatic Mediterranean ecosystems 
(Taylorab et al., 1996; Gonçalves et al., 2015). Several 
studies show that anuran tadpoles can detect chemical 
cues coming from predators and injured prey during 
predation events (Petranka et al., 1987; Schoeppner 
and Relyea, 2005; Fraker et al., 2009), Sublethal ef-
fects can thus be produced in amphibians by altering 
habitat conditions, behaviour, and development and 
growth (Anholt and Werner, 1995; Relyea, 2001, 2002; 
Rodríguez et al., 2005; Tejedo et al., 2010).

The eradication of P. clarkii from most Mediterranean 
wetlands is nearly impossible due to its reproductive 
and invasive traits. It has been suggested that the 
species plays an important role in the decline of local 
populations of amphibians in such ecosystems because 

of its predatory role, and particularly its direct or indi-
rect effects on tadpoles (Renai and Gherardi, 2004; 
Rodríguez et al., 2005; Cruz et al., 2006). Many authors 
have described changes in behaviour, morphology 
and growth during metamorphosis processes of native 
tadpoles in interaction with P. clarkii (Almeida et al., 
2011; Gonçalves et al., 2011). Nunes et al. (2014a) 
observed that eight of nine species of tadpoles changed 
their morphology or life history when reared with the 
fed dragonfly, but only four made such changes when 
reared with the fed crayfish, suggesting among–species 
variation in the ability to respond to a novel predator. 

Nowadays, one of the most important challenges 
in animal ecology is to know more about phenotypic 
plasticity of species in front of environmental changes. 
Many studies have been conducted to obtain more 
information on phenotypic plasticity of prey induced 
by predators. Some studies have focused in anuran 
species report a clear lack of response to invasive 
predators (Smith et al., 2007; Gomez–Mestre and 
Díaz–Paniagua, 2011; Vázquez et al., 2017), while 
other studies report different types of behavioural and 
morphological responses after a relatively short period 
of coexistence with the invasive predator (Kiesecker 
and Blaustein, 1997; Pearl et al., 2003; Almeida et 
al., 2011; Gonçalves et al., 2011; Pujol–Buxó et al., 
2013; Nunes et al., 2014a). The phenotypic plasticity 
of prey in front of invasive predator species is also 
an important factor to take into account. Heritable 
phenotypic plasticity to native species might thus 
be a key step to understanding the effects of global 
environmental changes, such as biological invasions.

The main objective of this study was to examine 
the effects of the presence of the predatory invasive 
crayfish P. clarkii (with non–lethal effects) on the 
growth and development of the Iberian green frog 
Pelophylax perezi in field conditions in the Natural 
Park of Aiguamolls de l’Empordà (NE of the Iberian 
Peninsula). Most previous studies examining the 
effects of invasive predators to anuran development 
have been developed under lab or mesocosm con-
ditions. An innovative aspect of our study is that the 
experiment was developed under field conditions. We 
aimed to answer the following questions: first, does the 
presence of P. clarkii hasten metamorphosis of P. perezi? 
We hypothesized that the time to metamorphosis 
would be delayed because of diminished activity and 
consequent lower energy intake (Tejedo et al., 2010; 
Touchon et al., 2015); and second, does the presence 
of P. clarkii affect survival, growth rate and mass of 
metamorphs? We hypothesize that detection of the 
predator P. clarkii could induce differences in feeding 
activity, resulting in smaller sizes at metamorphosis 
(Orizaola et al., 2012; Richter–Boix et al., 2004). 

Material and methods

Study species 

P. perezi is the most common and widespread frog 
species in the Iberian Peninsula (Bosch et al., 2009; 
Masó and Pijoan, 2011). Adults are essentially aquatic, 
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drical field enclosures made of plastic screen mesh 
(2.0 mm mesh; 19 cm diameter, 46 cm height; depth 
of enclosure submergence was approximately 40 cm 
[11–liter volume]) and were divided among three spatial 
blocks. There was thus a total of 30 replicates, 15 for 
each treatment (i.e. for each pond), and 300 tadpoles. 
One of the ponds was a control, without P. clarkii 
(hereafter referred to as 'control pond'). The pond with 
the invasive predator (hereafter referred to as 'invaded 
pond') had a density of individuals of P. clarkii similar 
to that of natural conditions (6 crayfish/m2) (Gherardi 
and Acquistapace, 2007). P. clarkii individuals were 
collected with crayfish traps in the Natural Park of 
Aiguamolls de l’Empordà and we added predators, 
regardless of sex, to the experimental pond on the 
same day they were collected.

We searched ponds daily for metamorphs, defined 
by the emergence of at least one forelimb (stage 42; 
Gosner, 1960). When metamorphs were detected, 
they were removed immediately from the enclosu-
re and total weight was measured to the nearest 
0.0001  g. On day 156 (10th of October 2004), we 
ended the experiment because most surviving animals 
had reached metamorphosis.

Data analyses

Mass at metamorphosis (weight of metamorph), larval 
period (number of days until metamorphosis, day of 
Gosner stage 42) and survival at metamorphosis (Sm,  
metamorphosed) were used to measure the response 
of tadpoles to the invasive predator P. clarkii. Total sur-
vival (Ts, number of metamorphosed individuals and 
tadpoles that survived at the end of the experiment) 
was also considered since some individuals did not 
metamorphose at the end of the experiment, but they 
were alive. Survival data was binomial: alive or death.

A linear regression was performed to analyze mass 
at metamorphose and larval period linear dependence. 
This analysis was done at an individual level because 
working with the means rules out intravariability within 
the species and we could have lost information con-
cerning the relationship between these two variables. 
Treatment effects (control pond or invaded pond) on 
mass of metamorph, larval period and growth rate were 
analysed using the SPSS program, and the univariant 
model, considering individuals as experimental units. 
The enclosure was nested within a particular pond; this 
term was considered random in an overall mixed GLM 
(Df are in table 1). Larval period, mass of metamor-
ph, and growth rate were log transformed to achieve 
normality distribution. Survival at metamorphosis and 
total survival were analysed using a generalized linear 
model with a binomial distribution and a logit function. 
All statistical analyses were performed using SPSS 15 
(SPSS Inc., Chicago, IL, USA, 1989–2006).

Results

Overall, our results showed that tadpoles reared 
under the presence of P. clarkii had a shorter larval 
period (pond with P. clarkii: 67.30 days (SE 1.62); 

although they have a certain terrestrial dispersion 
capacity (Egea–Serrano, 2009). P. perezi is present 
in many types of Mediterranean and Eurosiberian ha-
bitats, such as wetlands, ponds, lakes, rice fields, and 
rivers. In the study area, it shares habitats with natural 
predators such as autochthon fish and dragonflies, as 
well as with invasive predators such as P. clarkii. The 
Natural Park of Aiguamolls de l’Empordà consists of 
wetlands that can be considered a long–term invaded 
area because P. clarkii has been present since the 
1980s (Moreno–Amich and Vila–Gispert, 2000), and 
by the 1990s it had become abundant throughout the 
Park (Moreno–Amich and Vila–Gispert, 2000). The 
red swamp crayfish (P. clarkii) has a cylindrical body 
with a clearly marked abdomen and differentiated 
and segmented thoracic limbs. It is considered an 
opportunistic omnivore (Gutiérrez–Yurrita et al., 1998) 
and it tends to inhabit swamp areas with abundant 
vegetation (especially macrophytes) (Gherardi et 
al., 2002). It exhibits characteristics of an r–selected 
species, including early maturity at small body size 
(10 g), rapid growth rates (50 g in 3–5 months), lar-
ge numbers of offspring at a given parental size (a 
female of an average size producing 400 pleopodal 
eggs), and relatively short life spans (Gherardi, 2006). 

Experimental design and study site

Field work was conducted at the Natural Park of Aigua-
molls de l’Empordà (North–East of the Iberian Peninsu-
la). Two ponds were created for the experiment in the 
natural park wetlands area at the beginning of autumn 
2003 (UTM: 507473, 4674382). The area of each pond 
was 4 x 4 m and 1 m in depth, and they were sepa-
rated from each other by 5 m. After they were made, 
the ponds were surrounded by a plastic fence of 1 m 
in height. This fence was sunk 30 cm into the ground 
to avoid amphibians and crayfishes entering the ponds. 
The bottom of one of the ponds, considered a control 
pond (without P. clarkii), was lined with screen–mesh 
under the soil to avoid the entrance of individuals of P. 
clarkii. During autumn 2003 and spring 2004, the ponds 
were naturally colonized by aquatic vegetation with 
species such as Typha latifolia and Chara vulgaris. As 
the ponds were alongside each other, they were under 
the same environmental conditions with the same forest 
canopy and similar to sunlight. We therefore assume 
that the two ponds had similar physical–chemical water 
features with around 600 µS/cm conductivity, 8.24 pH, 
and near 100 % exposure of oxygen saturation (these 
variables were measured twice during the experiment, in 
June, and in August). Water temperature was measured 
10 times during the experiment and was similar between 
ponds, ranging from the 29 ºC in July and August to a 
minimum of 21ºC in October.

In 27th April of 2004 two egg masses of P. perezi 
were collected in the Natural Park of Aiguamolls de 
l’Empordà. Eggs hatched in the laboratory at 23–25 ºC 
and were held until tadpoles were free–swimming (Gos-
ner stage 25; Gosner, 1960). We mixed tadpoles from 
the different clutches before use in the experiment to 
homogenize genetic variation. For each pond, groups 
of 10 tadpoles were randomly assigned to 15 cylin-
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pond without P. clarkii: 105.9 days (SE. 4.89); fig. 1, 
table 1). The metamorph mass and larval period were 
linearly correlated for both treatment groups (fig. 2; 
pond without P. clarkii, R2 = 0.348 (p = 0.001) and pond 
with P. clarkii, R2 = 0.314, p = 0.001). Therefore, the 
final weight of metamorph increased with the increase 
of the larval period, and growth rate was significantly 
higher in the pond with P. clarkii (table 1, pond with P. 
clarkii, 0.006 g/d, SE 0.0003; pond without P. clarkii: 
0.004 g/d, SE 0.0002). No significant differences were 
found between treatments for the metamorph mass 
(table 1; pond with P. clarkii, 0.43 g, S.E. 0.19; pond 
without P. clarkii, 0.40 g, SE 0.0)). Figure 2 shows 
the segregation of the two groups during the larval 
period, but no segregation occurred between groups 
along the metamorph mass axis, indicating treatment 
had no effect on this variable. The presence of P. 
clarkii did not promote significant differences in total 
survival or in survival to metamorphosis. 

Discussion

Our results suggest that the presence of the invasive 
species P. clarkii influences tadpole development since 
tadpoles reared in the presence of P. clarkii had a 
shorter larval period, reaching metamorphosis earlier 
than tadpoles reared in an environment without P. 
clarkii. We hypothesized that the time to metamorpho-
sis would probably be longer because of diminishing 
activity and consequently less energy intake (Tejedo et 
al., 2010, Touchon et al., 2015). However, discussion 
on this issue continues and our results indicate other 
patterns could operate in this predatory–prey relation. 
Denver (1995, 1997a) showed that tadpoles in drying or 
stressed conditions initiated metamorphosis early due 
to activation of the corticotrophin–releasing hormone, 
known to be responsible to advance metamorphosis 
for tadpoles (Denver, 1997b). P. clarkii might act as 
a stressor to P. perezi, as it reportedly preys on egg 
masses, tadpoles and even adult amphibians (Gherardi 
et al., 2001). Therefore, in our study, P. clarkii might 

have accelerated metamorphosis of tadpoles through 
such activation of corticotrophin–releasing hormone. 
Orizaola et al. (2012) and Richter–Boix et al. (2004) 
suggested that the presence of predators will result in 
smaller sizes at metamorphosis. Nevertheless, although 
mass at metamorphosis was not significantly different 
between treatments in our study, our results show that 
growth rate was significantly higher for individuals reared 
under P. clarkii presence. This agrees with Nunes et 
al. (2014b), who showed that P. perezi tadpoles tend-
ed to grow faster in the presence of crayfish than in 
non–predatory environments. A larger prey size might 
provide an advantage from predation, so that increasing 
growth rate could also be a direct and adaptive response 
to predation (Urban, 2007). Importantly, however, the 
growth/predation risk trade–off is a common constraint 
documented for many organisms, with higher growth 
rates coming at the expense of increased vulnerability 
to predators (Lima and Dill, 1990; McPeek, 2004). 

Nunes et al. (2014b) studied P. perezi and P. 
clarkii relations considering frog populations differing 
in historical exposure to the invasive predator. Tad-
poles from non–invaded populations responded to the 
presence of P. clarkii with behavioural plasticity (they 
reduced behavioural activity), whereas long–term 
invaded populations showed canalized antipredator 
behavior (they presented a constant low activity lev-
el). Their results suggest that, while native P. perezi 
populations responded behaviourally to P. clarkii, the 
strong predation pressure imposed by the crayfish 
has induced the evolution of qualitatively different 
antipredator defences in populations with longer 
coexistence time. The Natural Park of Aiguamolls de 
l’Empordà consists of wetlands that can be consid-
ered a long–term invaded area (P. clarkii has been 
present for more than 20 years). In our experiment, 
therefore, tadpoles (from both treatments) might show 
a constant low activity level. As a result, tadpoles 
reared under the presence of the crayfish, might 
not present changes in behavioural activity levels 
but higher growth rates, while tadpoles without the 
presence of crayfishes might not accelerate growth 

Table 1. General linear model results for effects of treatments to mass at metamorphosis and larval 
period and growth rate (log transformed to assume normality).

Tabla 1. Resultados obtenidos con el modelo lineal generalizado de los efectos de los tratamientos en la masa 
en la metamorfosis, el período larvario y la tasa de crecimiento (log transformado para suponer normalidad).

	                               Df	   Mean square     Error          F    	 P–value

Larval period	 Pond	 1	 0.72	 0.15	 104.48	 < 0.0001

	 Pond * enclosure	 17	 0.01	 0.27	 2.80	 0.001

Mass at metamorphosis	 Pond	 1	 0.04	 0.71	 1.60	 0.22

	 Pond * enclosure	 17	 0.02	 1.28	 1.36	 0.18

Growth rate	 Pond	 1	 1.11	 0.57	 43.6	 < 0.0001

	 Pond * enclosure	 17	 0.03	 1.06	 2.61	 0.002
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Fig. 1. Relation between number of metamorphs and time to metamorphosis for the two treatments.

Fig. 1. Relación entre el número de renacuajos en fase de metamorfosis y la duración de la metamor-
fosis para los dos tratamientos.

Fig. 2. Tadpole mass at metamorphosis linearly dependent on the tadpole larval period for each treatment: 
pond without P. clarkii (R2 = 0.348, p = 0.001) and pond with P. clarkii (R2 = 0.314, p = 0.001).

Fig. 2. Relación lineal entre el número de renacuajos en fase de metamorfosis y el período larval para cada 
tratamiento: estanques sin P. clarkii (R2 = 0,348, p = 0,001) y estanques con P. clarkii (R2 = 0,314, p = 0,001).
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since they did not detect cues and danger. Nunes et 
al. (2014b) stated that a negative correlation between 
growth and behaviour agrees well with the low activity 
levels found in long coexistence populations.

The role of antipredator phenotypic plasticity might 
be crucial in population dynamics during biological 
invasions (Miner et al., 2005). Relyea (2005) first 
examined the heritability of predator–induced de-
fences, and observed that predator–induced traits 
can frequently be heritable, although the magnitude 
of heritability can be wide ranging across environ-
ments. Beyond the direct predation impact, P. clarkii is 
known for its capacity to destroy macrophytes and to 
increase water turbitidy by digging tunnels, all actions 
that contribute to increase algal growth in invaded 
ponds and lakes (Rodriguez et al., 2005). As a result, 
tadpoles would feed much better in a more eutrophic 
and algal dominated pond than in an oligotrophic 
pond dominated by macrophyte. This could explain 
the higher growth rate among tadpoles in the pond 
with crayfish, but we cannot make this conclusion 
as we did not measure changes in the algae com-
munity or in turbidity. As some studies indicate how 
location (field or laboratory, for example) can affect 
survival (Mitchell, 1990; Saura–Mas et al., 2002), we 
hypothesized that presence or absence of P. clarkii 
could also affect survival rates by increasing stress 
variables related to growth. Nevertheless, we did not 
detect a significant impact on survival rates, probably 
because there was no direct contact between prey 
and predator. Our results suggest that stress promoted 
by the presence of P. clarkii might promote shorter 
life cycles but not changes in survival if there is no 
contact between prey and predator.

A potential weakness in our study is that our statis-
tical analysis did not consider the possibility that native 
predators could also induce defences in tadpoles. 
While tadpoles in this study have similar habitats and 
experience similar native predator regimes, we cannot 
exclude the possibility that these differences may 
result from adaptation to other local habitat features 
such as competitors or food availability (Relyea, 2002; 
Richter–Boix et al., 2010).

Finally, we conclude that, in field conditions, the 
invasive species P. clarkii might accelerate a meta-
morphosis of P. perezi tadpoles in Mediterranean 
wetlands ecosystems. Here we show that in addition 
to direct predation, this invasive predator may also 
alter P. perezi populations by increasing their growth 
rate by decreasing the larval period and, as a result, 
maybe also decreasing the length of the life cycle. 
These P. perezi life cycle changes might not be 
synchronised with the food web in Mediterranean 
wetlands, causing effects at a community level. These 
results represent a preliminary approach to the study 
of changes that this invasive species can drive in P. 
perezi populations. Further studies with higher sta-
tistical power are needed to confirm our trends. Our 
findings, however, coincide with observations from 
other studies indicating that phenotypic plasticity in 
P. perezi may play an important role in population 
dynamics in the face of global changes such as those 
involving invasive predators.
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