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Abstract 
Accounting for uncertainty in assessing the impact of climate change on biodiversity hotspots in Spain. Our limited 
understanding of the complexity of nature generates uncertainty in mathematical and cartographical models used 
to predict the effects of climate change on species’ distributions. We developed predictive models of distributional 
range shifts of threatened vertebrate species in mainland Spain, and in their accumulation in biodiversity hotspots 
due to climate change. We considered two relevant sources of climatological uncertainty that affect predictions 
of future climate: general circulation models and socio–economic scenarios. We also examined the relative im-
portance of climate as a driver of species' distribution and taxonomic uncertainty as additional biogeographical 
causes of uncertainty. Uncertainty was detected in all the forecasts derived from models in which climate was a 
significant explanatory factor, and in the species with taxonomic uncertainty. Uncertainty in forecasts was mainly 
located in areas not occupied by the species, and increased with time difference from the present. Mapping this 
uncertainty allowed us to assess the consistency of predictions regarding future changes in the distribution of 
hotspots of threatened vertebrates in Spain.
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Resumen
Considerar la incertidumbre en la evaluación de los efectos del cambio climático en las zonas de gran diversidad 
de España. Nuestra comprensión incompleta de la complejidad de la naturaleza genera incertidumbre en los 
modelos matemáticos y cartográficos utilizados para predecir los efectos del cambio climático en la distribución 
de las especies. Se elaboraron modelos para predecir los cambios producidos por el cambio climático en la 
distribución de las especies de vertebrados amenazados en la España peninsular y en sus correspondientes 
zonas de alta biodiversidad. Se consideraron dos fuentes importantes de incertidumbre climática que afectan 
a las predicciones climáticas: los modelos de circulación general y el contexto socioeconómico. Asimismo, se 
analizó la importancia relativa del clima en cuanto factor determinante de la distribución de las especies y la 
incertidumbre taxonómica como causas biogeográficas añadidas de incertidumbre. Se detectó incertidumbre en 
todos los pronósticos realizados a partir de modelos en los que el clima era un factor explicativo significativo y 
en las especies con incertidumbre taxonómica. En los pronósticos, la incertidumbre se localizó principalmente 
en áreas no ocupadas por las especies y aumentó con el desfase temporal respecto al presente. La represen-
tación cartográfica de esta incertidumbre permitió evaluar la coherencia de las predicciones con respecto a los 
futuros cambios de la distribución de las zonas de alta biodiversidad de vertebrados amenazados de España. 

Palabras clave: Cambio climático, Exactitud de las predicciones, Incertidumbre taxonómica, Especies amena-
zadas, Mapas de incertidumbre
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Introduction 

Species distribution modelling (SDM) is useful to fo-
recast the potential consequences of climate change 
on conservation of biodiversity (Dawson et al., 2011). 
A great deal of digital cartographic information has 
been produced related to observed and predicted 
climate, such as WorldClim (Hijmans et al., 2005; 
Fick and Hijmans, 2017), CliMond (Kriticos et al., 
2012) and IPCC gas–emission scenarios (GESs) 
(Nakićenović et al., 2000). This large amount of 
information has significantly advanced predictive 
SDM. However, in SDMs and subsequent forecasts, 
uncertainties affect the reliability of predictions, 
leading to misconceptions and interpretation errors 
(Knutti, 2008), with critical consequences on the 
application of distribution forecasts to conservation 
policy (Real et al., 2010).

Identifying the geographic distribution of uncertainty 
associated with a predictive model is, consequently, 
as important as the model mapping itself (Beale and 
Lennon, 2012; Kujala et al., 2013). Several  sources of 
uncertainty have been analysed, such as the variety of 
SDM methods (Carvalho et al., 2011; Beale and Len-
non, 2012), the inherent imperfection of atmospheric 
circulation models (i.e. GCMs, Knutti, 2008; Real et al., 
2010), alternative proposals on future GESs (Real et al., 
2010, Carvalho et al., 2011), the resolution of climate 
data (McInerny and Purves, 2011), and survey design 
(Tessarolo et al., 2014). However, other sources of un-
certainty in mapping species distributions have seldom 
been studied (Rocchini et al., 2011). Few studies have 
assessed the effects of taxonomic uncertainty (Lozier et 
al., 2009; Romero et al., 2013; McInerny and Purves, 
2011; Tessarolo et al., 2017), diversity of sources for 
climate data (Fernández et al., 2013; García–López 
and Real, 2014), behavioural plasticity of species in 
their response to climate change (Muñoz et al., 2015),  
correlations between climate,  and other environmental 
factors (Real et al., 2013). These causes of uncertainty 
can affect model accuracy more than the availability 
of GCMs and GESs.

The combination of models based on different 
species provides a dynamic measure of potential 
species’ richness, as it can fill gaps in distribution 
knowledge mainly due to sampling bias (Estrada and 
Real, 2018). This combination is particularly useful 
for predicting future changes in the distribution of 
biodiversity hotspots (Estrada et al., 2008; Real, et 
al., 2017). When focused on endangered species, it 
can enable forecasts with important applications for 
conservation. However, combining models requires 
the use of SDM outputs based on a commensurate 
index that provides comparable measures of the 
importance of different localities for different species. 
This index is provided by the favourability function 
(Real et al., 2006; Acevedo and Real, 2012) as it 
removes the effect of prevalence from predicted 
probabilities, and therefore more accurately describes 
the environmental conditions that facilitate species 
presence, regardless of the proportion of presences 
in the dataset (Barbosa and Real, 2012; Acevedo and 
Real, 2012). Favourability models can be combined 

through the application of fuzzy–logic operations (Es-
trada et al., 2008; Barbosa and Real, 2012; Romero 
et al., 2014; Olivero et al., 2017).

In this study, we took advantage of the properties 
of the favorability function regarding model combi-
nation to forecast how climate change may modify 
the location of biodiversity hotspots for threatened 
vertebrates in mainland Spain and to analyse the 
uncertainty associated with the resulting forecasts. 
We took into account the effect of alternative general 
circulation models, different gas–emission scenarios, 
the correlation between climate and other factors, and 
taxonomy on the forecasts. Specifically, we assessed 
the uncertainty associated with the identification of the 
areas where threatened species are most vulnerable 
to climate change. We also mapped the distribution of 
the degree of uncertainty, and quantified the reliability 
of forecasts across the study area.

Material and methods

Species and study area

Spain comprises 84 % of the Iberian peninsula, a 
biogeographically relevant area for the conservation 
of biodiversity hotspots (Maiorano et al., 2013). 
We analyzed all threatened vertebrate species in 
mainland Spain, where more than sixty percent of 
those with European distributions (in terms of extent 
of occurrence) are found. Only 14 species had less 
than 90 % of their European distribution within Spain, 
namely Chioglossa lusitanica, Calotriton asper, Sa-
lamandra salamandra, Rana iberica, Iberolacerta 
bonnali, I. aranica, Mauremys leprosa, Cercotrichas 
galactotes, Emberiza shoeniclus, Tetrao urogallus, 
Tetrax tetrax, Arvicola sapidus, Microtus cabrere 
y Rhinolophos mehelyi, which present significant 
populations in Portugal or France. We modelled 
seven amphibian, seven reptile, twelve bird and 
six mammal species (table 1s). We selected the 
threatened species according to the IUCN criteria 
(vulnerable, endangered and critically endangered), 
adapted to Spain by national red books (Madroño et 
al., 2004; Pleguezuelos et al., 2004; Palomo et al., 
2007). Exceptions were: Calotriton asper, selected 
because some authors consider it is threatened 
(Montori and Llorente, 2008); Salamandra salaman-
dra, because its subspecies (S. s. longirostris), which 
is proposed to be a separate species (Dubois and 
Raffaëli, 2009), is vulnerable; and Tetrao urogallus 
and Emberiza shoeniclus, as all their populations in 
Spain are threatened subspecies.

Presence in the 5,156 10 x 10–km UTM grid cells of 
mainland Spain were obtained from Pleguezuelos et 
al. (2004) for amphibians and reptiles, from Martí and 
del Moral (2003) for breeding birds, and from Palomo 
et al. (2007) for mammals. These data represent all 
or most of the distribution of the analysed species. 
Data of similar quality were partly unavailable from 
Portugal, which is why we restricted our analysis to 
Spain. In addition, the models were explicitly built to 
be helpful in conservation policy decisions, such as 
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the design of nature reserve networks, which is de-
cided at a national level. The cells without presence 
according to the respective distribution atlas were 
considered as absences.

Although the number of presences was extremely 
low in a few cases (see table 1s), Proosdij et al. (2016) 
showed that the lower limit for presences needed 
to obtain good model performance depends on the 
species’ prevalence in the dataset, with absolute mi-
nimum sample sizes extremely low for narrow–ranged 
species. In our case, all cases with an extremely low 
number of presences corresponded to endemic and 
narrow–ranging species, and included the whole range 
of the species. Lobo and Tognelli (2011) showed that 
the model performance also depends on the number 
of absences used to calibrate the models, with bet-
ter performance when absences are numerous and 
unbiased. In our case, the number of absences was 
always very high and unbiased, particularly when 
modelling species with highly restricted ranges.

Predictors 

Factors other than climate should be considered in 
SDMs constructed to  forecast changes induced by 
climate in species distribution (Aragón et al., 2010; 
Márquez et al., 2011). We assessed four factors 
that had a potential impact on species distributions 
(Márquez et al., 2011): climate, space, topography, 
and human influence (table 2s). Climate is the main 
driver of species distribution to be analysed when 
assessing the effect of climate change on species 
distribution. The use of the spatial factor in the mo-
dels accounts for geographical trends that cannot be 
explained by climate (Legendre, 1993). These spatial 
trends may arise from population dynamics, dispersal 
capacities, and historical events that affected species 
distributions (Legendre, 1993; Real et al., 2003). The 
topographic factor allows us to assess whether there 
is any relationship between the topographic structure 
of the territory and the distribution of the species, 
independently of the relationship between topogra-
phy and climate. Finally, human activity may have 
an effect on the availability and quality of habitats of 
many species, possibly interfering with the effects of 
climate (Delibes–Mateos et al., 2009).

Table 2s shows the climatic, spatial, topographic 
and human variables and sources. The original resolu-
tion adopted for the variables was one km2 per pixel; 
we computed average values for each 10 × 10–km 
square using ArcGIS 10.0 zonal statistic tools (ESRI, 
2011). With the longitude and latitude of the original 
spatial variables we built a single spatial variable to 
be used as a spatial predictor for every species. For 
this, we made a trend surface analysis by performing 
a backward stepwise logistic regression of each spe-
cies’ presence/absence on nine spatial components 
that describe the spatial position of the data: X, Y, 
X2, Y2, X×Y, X3, Y3, X2×Y, Y2×X (X, latitude; Y, posi-
tive longitude). This produced a lineal combination 
of spatial components that we used as the single 
spatial predictor in the subsequent models. We used 
IBM SPSS statistics 21 (IBM, 2012) for this analysis.

Selection of variables and model building

Spearman correlation coefficients (r) were calculated 
to control the multicollinearity between independent 
variables. When a set of variables belonging to the 
same factor were correlated with r > 0.8, we selected 
just the variable with the most significant predictive 
power on the species presence; this was established 
by performing a logistic regression of presences/ab-
sences on the set of correlated variables separately 
and selecting the variable most significantly related 
with species presence/absence. This resulted in a 
reduced set of potential predictors that were tailor–
suited for each species.

We then performed logistic regressions of each 
species' presence/absence on the remaining variables 
separately. The false discovery rate (FDR) was used 
to control the increase in type I errors due to the 
number of remaining independent variables (Benja-
mini and Hochberg, 1995). The variables significantly 
related (p < 0.05) to the species distribution under a 
FDR < 0.05 were considered to be the further reduced 
subset of acceptable predictors.

We next performed a multivariate forward–bac-
kward stepwise logistic regression of presences/
absences of each species on their corresponding 
reduced set of predictor variables to obtain probability 
values (P) of the species' presence in every square. 
Variables were included in the models according to 
the significance of their relationship with the species 
distribution while avoiding redundancy by checking 
at each step that the new variables added significant 
new information to the model. This was considered 
the current probability model for the species.

Then, we modelled the present and future fa-
vourability for the presence of each species using 
the favourability function (Real et al., 2006, 2017). 
Favourability (F) was calculated from P using the 
following equation (Real et al., 2006):

F = [P/(1 – P)] / [(n1/n0) + (P/[1 – P])]

where n1 and n0 are the number of presences and 
absences, respectively. 

Climate in these models refers to the period 
1961–1990; the models were later projected to the 
expected conditions of three future periods: 2011–
2040, 2041–2070 and 2071–2100 in order to obtain 
the different future forecasts. To this end, we applied 
the following equation, using climate–variable values 
referring to the corresponding period:

F = ey / [(n1/n0) + ey]

where e is the base of the natural logarithm, and y is 
the logit function of the probability model obtained by 
multivariate logistic regression. We used IBM SPSS 
statistics 21 (IBM, 2012) for this analysis.

We evaluated the classification and discrimination 
capacity of the models using four indices: sensitivity, 
specificity, correct classification rate (CCR), and 
Cohen’s Kappa (Fielding and Bell, 1997). These indi-
ces assessed classification based on the 0.5–favou-
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rability threshold, which, in the favourability function, 
makes probability equal to overall prevalence. Discri-
mination capacity was evaluated using the area under 
the curve (AUC) of the receiver operating characte-
ristic. Although discrimination cannot be considered 
an overall measure of model performance (Lobo et 
al., 2008), AUC provides a measure of the degree 
to which the modelled predictors allow separating 
presences from absences, which is informative when 
geographical extent, presence/absence dataset and 
modelling technique remain constant, as is the case 
here (Lobo et al., 2008).

Forecasting the future distribution of biodiversity
hotspots

We considered four sources of uncertainty associated 
with future forecasts (fig. 1): (1) two alternative general 
circulation models (GCMs): CGCM2 (Canadian Clima-
te Centre for Modeling and Analysis) and ECHAM4 
(Max Planck Institut für Meteorologie) (IPCC, 2013), 
regionalized to Spain by the Spanish Meteorological 
Agency (AEMET) (Brunet et al., 2007); (2) two diffe-
rent Gas–Emission Scenarios or GESs for the 21st 
century from IPCC, (Nakićenović et al., 2000): A2 and 
B2, representing intermediate positions in the range of 
projected temperature changes, being medium–high and 
medium–low respectively (Brunet et al., 2007); (3) the 
degree to which climate affects distribution models, as a 
consequence of correlations between climate and other 
factors. We forecast distribution changes according to 
the spatial variation in the model that was exclusively ex-
plained by climate (pure effect); alternatively, we forecast 
changes according to the spatial variation potentially, 
although not exclusively, attributable to climate (apparent 
effect). We followed the method described in Real et 
al. (2013), which is based on variation partitioning (Le-
gendre and Legendre, 1998); (4) taxonomic uncertainty, 
in those cases with taxonomic categorization under 
discussion. We constructed alternative models taking 
into account the taxonomic situations both before and 
after revision. This approach was used for: Salamandra 
salamandra longirostris, which is either considered a S. 
salamandra subspecies (García–París et al., 1998), or 
a species named S. longirostris (Dubois and Raffaëli, 
2009); Calotriton arnoldi, recently separated from Ca-
lotriton asper (Carranza and Amat, 2005); Iberolacerta 
monticola (Pleguezuelos et al., 2004), recently cate-
gorised into I. monticola, I. cyreni, I. martinezricai, and 
I. galani (Arribas et al., 2006; Arribas and Carranza, 
2004, 2015). Taxonomic alternatives resulted in two 
or more models for a single original species. On one 
hand, we considered a model for the species before the 
taxonomic revision; on the other hand, we considered 
a model performed by joining models for the species 
resulting from taxonomic revision using the fuzzy logic 
operator 'fuzzy union', which is equivalent to assigning 
the highest value observed in different models to each 
square (Zadeh, 1965). We calculated these fuzzy union 
values in each cell using the Max function from Microsoft 
Excel (version 2010).

We produced favourability models for each species 
according to each source of uncertainty. This resulted 

in eight favourability models for species with no taxo-
nomic uncertainty and eight further more favourability 
models for each taxonomic alternative (subspecies) 
for species with taxonomic uncertainty.

We applied the accumulated favourability to fore-
cast the distribution of future diversity hotspots for 
threatened vertebrates in mainland Spain derived 
from these models. The accumulated favourability 
is a proxy for a diversity index (Estrada et al., 2008; 
Real et al., 2017), defined by the sum of favourability 
models of a group of species:

AFj = S  Fij

where Fij is the favourability value for species i in 
square j.

This index was applied to the 32 species analy-
sed for 1961–1990 and for three future periods 
(2011–2040, 2041–2070, and 2071–2100) according 
to the four sources of uncertainty.

Uncertainty assessment

We used fuzzy logic operators to summarize the 
effect of the different sources of uncertainty on the 
predictive models (Zadeh, 1965). Fuzzy union re-
presented the highest favourability value predicted 
for a species in each cell according to any of the 
four sources of uncertainty. Fuzzy intersection repre-
sented the lowest favourability value predicted for 
a species in each cell according to any of the four 
sources of uncertainty. Fuzzy intersection indicates 
the minimum consensus among the models (Ro-
mero et al., 2016). Average favourability predicted 
for a species in each cell according to any of the 
four sources of uncertainty was also computed as 
an indicator of a balanced consensus among the 
models. We calculated these values in each cell 
using the Microsoft Excel functions (version 2010): 
Max, Min and Average, respectively. We obtained the 
accumulated favourability values resulting from the 
fuzzy union, the fuzzy intersection and the average 
favourability of the models produced according to 
the four uncertainty sources, which summarized the 
effect of the different sources of uncertainty on the 
forecasted biodiversity hotspots.

We also calculated the fuzzy symmetric difference 
(Dubois and Prade, 1980) between all pairs of SDMs 
produced for the same species whose differences 
were based on a single source of uncertainty (i.e., 
a symmetric difference for each species, time eriod, 
and uncertainty source):

FA▼B(j) = |FA(j) – FB(j)|

where FA and FB represent favourability values for 
a given j square according to two alternative SDMs 
for the same species. The degree of uncertainty in 
each j square (Uj) was calculated as the fuzzy union 
(the maximum value) of all the symmetric differences 
applying to a species in a given time period. The 
mapping of Uj indicated the geographic distribution of 

n

i = 1
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the uncertainty associated to the predicted species 
distribution. Finally, we assessed the uncertainty 
associated to AFj values using the accumulated 
uncertainty index:

AUj = S  (Uij)

where Uij is the degree of uncertainty associated 
with the forecasts from different uncertainty sources 
obtained for species i in square j.

Results

Model assessment

We obtained significant favourability models for the 32 
species considered. Figure 2 shows an example for 
one species, and all models can be seen in supple-
mentary material. Classification and discrimination 
assessments generally obtained high scores. On 
a scale ranging from 0 to 1, sensitivity was always 
higher than 0.6 (average 0.93); specificity was higher 
than 0.66 (average 0.88); CCR was higher than 0.69 
(average 0.89); and Cohen's Kappa was higher than 
0.1, with an average 0.42 or 'good' according to Fiel-
ding and Bell (1997). On a scale ranging from 0 to 1, 

n

i = 1

the AUC was always higher than 0.70 or 'acceptable' 
according to Hosmer and Lemeshow (2000), with an 
average of 0.95 or 'outstanding'.

Relative importance of climate and other explanatory
factors 

The pure effect of climate explained more than 40 % 
of the environmental favourability for 17.5 % of the 
species analysed: 27 % of reptiles, 25 % of birds, 9 % 
of amphibians, but 0 % of mammals (see Supplemen-
tary material, in fig. 1s, pictures 1–32). When the 
apparent effect of climate was considered, it explained 
more than 40 % of the environmental favourability in 
72.5 % of the species: 83 % of mammals, 81 % of 
amphibians, 67 % of birds, and 64 % of reptiles. In 
contrast, non–climatic variables explained more than 
40 % of the environmental favourability in 42.5 % of 
the species: 68 % of mammals, 64 % of amphibians, 
36 % of reptiles, and 17 % of birds (see supplementary 
material, in fig. 1s, pictures 1–32).

Effect of climate change on Spanish threatened
vertebrates 

Eight different forecasts per species and future 
period were calculated, varying according to the 
sources of ambiguity considered in every case (see 

Fig. 1. Schematic representation of the model diversification caused by the different sources of uncertainty: 
N, number of species resulting from taxonomic revision in species with taxonomic uncertainty; X2, 
duplication of forecasts due to the different consideration of climate as a driver of species distribution; and 
XN, multiplication of models due to different taxonomic alternatives for species with taxonomy uncertainty.

Fig. 1. Esquema de la diversificación del modelo provocada por las distintas fuentes de incertidumbre:  
N, número de especies resultante de la revisión taxonómica en las especies de taxonomía incierta; X2, 
duplicación de los pronósticos debido a la diferente consideración del clima como factor determinante 
de la distribución de las especies; XN, multiplicación de modelos debido a las diferentes alternativas 
taxonómicas para las especies de taxonomía incierta.
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Fig. 2. Example of the methodology modelling for Aquila adalberti with the forecasts according to: two general 
circulation models, two gas–emissions scenarios and the different contribution of climate. Below, the consensual 
favourability values (minimum, maximum and average), and the uncertainty distribution in 2071–2100.

Fig. 2. Ejemplo de la metodología de elaboración de modelos para Aquila adalberti con los pronósticos 
según: dos modelos generales de circulación, dos situaciones hipotéticas de emisiones de gases y la 
diferente contribución del clima. Abajo, los valores consensuados de favorabilidad (mínimo, máximo y 
promedio) y la distribución de la incertidumbre en el período 2071–2100.
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supplementary material, in fig. 1s, pictures 1–32), with 
eight more forecasts for each taxonomic alternative 
(subspecies) in the species with taxonomy uncertainty. 
When the apparent effect of climate was considered, 
the increment in favourability (Real et al., 2010) was 
positive for 48.8% of the species, negative for 39.6 % 
of the species, and nearly zero (< 1 %) for 12 % of the 
species. The average change between 1961–1990 
and 2071–2100 for all models was 26 %. However, 
distributions forecasted according to the pure effect of 
climate were predicted to experience lower changes 
(average 7.3 %): favourability increased in 26.8 % of 
species, decreased in 27.4 %, and remained unchan-
ged in 45.7 % (see supplementary material, in fig. 1s, 
pictures 1–32).

A decrease in favourability over time was fore-
cast for 60.4 % of the studied endemic mammals, 
57.3 % of birds, 29.6 % of amphibians, and 27.1 % 
of reptiles. Opposite trends depending on the GCM 
considered were predicted only for five species 
(Alytes dickhilleni, Algyroides marchi, Chioglossa 
lusitanica, Lepus castroviejoi, and Pterocles alchata). 
Our SDMs forecast an exceptionally large decrease 
of favourability (> 50 % according to at least two 
methodological options), for another five species 
(Rana pyrenaica, Iberolacerta montícola, Chersophilus 
duponti, Pterocles alchata, and Tetrao urogallo). All the 
methodological options explored forecast a decrease 
in favourability in three species only (Iberolacerta 
bonnali, Iberolacerta montícola, and Chersophilus 
duponti). For seven more species (Chioglossa  
lusitanica, Triton pygmaeus, Mauremys leprosa, 
Arvicola sapidus, Galemys pyrenaicus, Microtus 
cabrerae, and Rhinolophus melei), a decrease in fa-
vourability was predicted according to all the forecasts 
based on the apparent effect of climate.

Forecasted biodiversity hotspots and associated 
uncertainty

Figure 3 shows the accumulated favourability (AF) of 
all species, representing the biodiversity hotspots. The 
accumulated favourability showed a general positive 
increase over time in the centre and south–west of 
Spain (fig. 3). In contrast, the lowest accumulated 
favourability values were detected in the north–east 
(see fig. 3, 4).

The uncertainty associated to AF values can be 
seen in figure 4. Uncertainty was detected in all the 
forecasts involving climate variables and in the species 
subject to taxonomic uncertainty. Favourability forecasts 
showed low and highly localized uncertainty values for 
most species, with high uncertainty values generally 
aggregated at the edges of species distributions. In 
87.5 % of the forecasts, the area affected by uncertainty 
increased as a function of the time elapsed from the 
present (fig. 4; and fig. 2s, pictures 1–32); a decrease 
was detected only in the case of Chersophilus duponti 
(fig. 2s, picture 19). Our models showed an aggregation 
of the highest uncertainty values in the eastern half of 
the Iberian peninsula, including the Pyrenees and some 
southern mountains (fig. 4). In the north–eastern Pyre-
nees, some species, such as Iberolacerta monticola, 

showed high discrepancies in future favourability values 
forecasted by alternative models (fig. 1s, picture 10.1), 
and therefore high uncertainty (fig 2s, picture 10.1).

Discussion

Effects of uncertainty in distribution models

Several authors have indicated the importance of ta-
king into account the different sources of uncertainty in 
species distribution models (Knutti, 2008; Real et al., 
2010; Rocchini et al., 2011; Beale and Lennon, 2012). 
Our results also highlight that the implementation of the 
different uncertainty measures in SDMs is key for obtai-
ning reliable results. Specifically, our analysis allowed 
us to identify the areas where the models from different 
uncertainty sources are consistent and the areas where 
the uncertainty was mainly located (Beale and Lennon, 
2012; Kujala et al., 2013). The comparison between 
the consensus in the predictions between the different 
models and the associated uncertainty may thus be 
useful to locate the forecast important territories for 
conservation of species and the degree of reliability of 
these predictions (Beale and Lennon, 2012).

Relative importance of climate as a driver of species
distribution 

Climate was the most important factor influencing the 
distribution of birds and reptiles, whereas other factors 
were more influential for mammals and amphibians. 
This is probably a consequence of the greater dis-
persal ability of birds, which makes them less tied to 
regional influences such as historical events, geogra-
phic barriers, and local human influences (Cumming 
et al., 2012), and of the high dependence of reptiles 
on temperature (Adolph and Porter, 1993). However, 
much of the role of climate in explaining distributions 
fell on the intersection with other variables, in which 
the role of climate cannot be distinguished from the 
role of other factors (Real et al., 2013). In our models, 
climate not only had different degrees of influence 
depending on the species and the general circulation 
models (GCMs) and gas–emission scenarios (GES) 
analysed, but the relative contribution of climate 
was also responsible for the largest differences bet-
ween forecasts. Thus, the analysis of this source of 
uncertainty is of great relevance for  qualifying and 
geographically locating the reliability of distribution 
forecasts based on climate change. 

Climate change and predicted changes in favourability 

The concern about the negative impact of climate 
change on biodiversity was behind many of the 
studies on distribution forecasts in climate change 
scenarios (Bellard et al., 2012). Assessments of the 
positive impacts of climate change on species distri-
butions are nevertheless accumulating (e.g. Araújo 
et al., 2006; Romero et al., 2013; Sorte et al., 2013; 
García–Valdés et al., 2015). We found positive, neu-
tral, and negative effects depending on the species 
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Fig. 3. Accumulated favourability for the 32 species analysed from 1961–1990 and for three future 
periods (2011–2040, 2041–2070, and 2071–2100) according to four sources of uncertainty: two general 
circulation models, two emissions scenarios, and the different contribution of climate to the species 
distribution (apparent or pure effect).

Fig. 3. Favorabilidad acumulada de las 32 especies analizadas en el período 1961–1990 y en tres períodos 
futuros (2011–2040, 2041–2070 y 2071–2100) según las cuatro fuentes de incertidumbre: dos modelos 
de circulación general, dos situaciones hipotéticas de emisiones de gases y la diferente contribución del 
clima a la distribución de las especies (efecto aparente o efecto puro).

Fig. 4. Consensual accumulated favourability values (minimum, maximum, and average) and accumulated 
uncertainty taking into account the 32 species analysed for the three time periods.

Fig. 4. Valores consensuados de favorabilidad acumulada (mínimo, máximo y promedio) e incertidumbre 
acumulada teniendo en cuenta las 32 especies analizadas en los tres períodos de tiempo.
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considered. Consequently, our results suggest that 
climate change could harm many species by altering 
the local conditions they are adapted to, whereas it 
could contrarily move the environmental conditions 
closer to the optimal requirements of some other spe-
cies. Furthermore, species can adapt to new climatic 
conditions by modifying their phenology (Parmesan, 
2007) and physiology (Johansen and Jones, 2011), 
not only by changing their distribution ranges (More-
no–Rueda et al., 2011).

Several authors have predicted that reptiles and 
amphibians have the highest susceptibility to climate 
change (Araujó et al., 2006; Maiorano et al., 2013). 
However, our results suggest that some bird species 
could experience the highest decrease in favourability 
values (around 30 %), whereas this decrease could be 
about half (around 15 %) in the case of amphibians, 
reptiles, and mammals. This discrepancy could be due 
to the fact that we forecast on the basis of different 
degrees of participation of climate in the models. For 
a large number of birds, the highest proportion of 
explanatory power in the models was due to climate, 
regardless of whether the pure effect or the apparent 
effect of this factor was considered (non–climatic fac-
tors had more explanatory power only in the models 
of 17 % bird species). In all cases, the proportion of 
change over time was higher when the apparent effect 
of climate was taken into account than when its pure 
effect was considered (average difference, 25 %).

According to our forecasts, there are two groups 
of species for which conservation measures should 
be reinforced. The first group includes already en-
dangered species (Iberolacerta bonnali, Iberolacerta 
montícola, and Chersophilus duponti), for which there 
were consensus on a predicted decrease in environ-
mental favourability. We consider that these are good 
examples of reliable predictions that highlighted the 
suitable territories to incorporate in the decision–ma-
king framework for the conservation of these species 
(Beale and Lennon, 2012; Estrada and Real, 2018). 
Priority actions should therefore be implemented for 
these species in the territories with reliable forecasts of 
range contraction in order to prevent strong negative 
impacts due to climate change (Pleguezuelos et al., 
2004; Madroño et al., 2004; Dawson et al., 2011).

The second group includes species whose pre-
dicted trends are seriously affected by uncertainty, 
but for which a decrease in favourability is forecast 
by some of the models: Rana pyrenaica, Salaman-
dra longirostris, Pterocles alchata, Tetrao urogallo, 
Arvicola sapidus, Galemys pyrenaicus, and Microtus 
cabrerae. For some of these species, we detected 
areas where the decrease in favourability was not 
affected by uncertainty: some squares at the southern 
limit of the Rana pyrenaica distribution; the core 
squares of the north–western populations of Tetrao 
urugallo, that is home to a large part of the genetic 
stock of populations at the southern limit of its global 
distribution, essential for the conservation of the ge-
netic biodiversity of the species (Alda et al., 2013); 
the southern half of the Iberian peninsula, where the 
presence of Arvicola sapidus is scattered (Palomo 
et al., 2007); and the mid–western populations of 

Microtus cabrerae, for which climate was not the main 
driver of its distribution or possible decline (Alagador 
and Cerdeira, 2018). Anyway, for this group of spe-
cies our results highlighted territories to monitor the 
populations and evaluate the possibility of applying 
conservation measures (Dawson et al., 2011).

Areas most vulnerable to climate change

We found that a large part of western peninsular Spain 
has areas with favourable environmental conditions 
for a great majority of threatened vertebrates, an area 
that includes five Spanish National Parks (Estrada and 
Real, 2018). In contrast, the areas with the lowest 
favourability values and the highest uncertainty are 
located in some eastern areas. Wildlife managers will 
have to decide whether conservation priorities should 
focus on areas with the highest favourable environ-
mental conditions for a greater number of species, 
or on areas with less favourable conditions but in 
which some species are present (Real et al., 2017). 
Management efforts could also be prioritized accor-
ding to present or to future environmental conditions 
(Dawson et al., 2011; Beale and Lennon, 2012; Kujala 
et al., 2013). Our study contributes to this issue by 
identifying the areas in which environmental favoura-
bility is currently high, but in which a future decrease 
in favourability is predicted. Conservation measures 
should be reinforced, for example, by adapting the 
location and extension of protected spaces within the 
network of protected areas taking into account the 
dynamics of climate change (Estrada and Real, 2018), 
especially when the affected species are endemic or 
are narrowly distributed within the Iberian peninsula 
(e.g., Alytes dickhilleni, Iberolacerta monticola, Aquila 
adalberti, or Lynx pardinus).

It is also important to monitor areas that could 
become favourable for some species in the future 
under the effect of climate change, especially areas in 
which the accumulated favourability could reach high 
values and uncertainty is low; these areas might act as 
refuges for species vulnerable to climate change. This 
is the situation of the following species: Salamandra 
salamandra in the northernmost ridge of the Iberian 
peninsula, the Duero and Guadalquivir valleys, and 
in southern Spain (Romero et al., 2012; Tejedo et al., 
2003); Algyroides marchi in the southeast of the Ibe-
rian peninsula (Pleguezuelos et al., 2004); Emberiza 
shoeniclus in the Pyrenees and the northwest corner 
and eastern edge of the Iberian peninsula (Madroño et 
al., 2004); and Rhinolophus mehelyi in southwestern 
Spain (Palomo et al., 2007). 

Concluding remarks

Based on SDMs, climate change could have both 
positive and negative impacts on biodiversity. These 
effects will probably affect the distribution of species 
to different extents, and predictions will be more or 
less accurate in different locations according to each 
individual case. Advances in SDM cannot claim to 
eliminate the uncertainty involved in predictions, be-
cause uncertainty is often a result of the complexity 
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of nature and of our incomplete knowledge about 
how it works, and therefore about how to forecast its 
changes. The method used in this study takes into 
account a wide range of possible variations according 
to a range of sources of uncertainty, and also takes 
uncertainty into account to identify spatial overlap 
between alternative forecasts. Although climate was 
the most important factor influencing the distribution of 
threatened birds and reptiles, other factors were more 
influential than climate for threatened mammals and 
amphibians; m   oreover, climate not only had different 
degrees of influence depending on the vertebrate 
group, but correlations between climate and other 
factors were responsible for the largest differences 
between alternative forecasts. Besides, imprecision 
in forecasts increased as predictions move forward in 
time. Acknowledging, identifying, and quantifying the 
degree of imprecision in equally probable models for 
the same species generate more accurate predictions 
and serve to assess reliability in forecasts based on 
climate change.  
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Supplementary material

Table 1s. Endangered vertebrate species analysed, IUCN threatened categories adapted to Spain 
(IUCN), and number of 10 x 10 UTM squares in Spain with species presences: N, number of species;  
–0 and –1, species names before and after being divided into the current species, respectively. 

Tabla 1s. Especies analizadas de vertebrados amenazados, categorías de la UICN adaptadas para 
España y número de cuadrículas UTM de 10 x 10 km con presencia de la especie en España: N, número 
de especies; –0 y –1, nombre de las especies antes y después de dividirse en las especies actuales. 

       ID     Species                              Abbr.            Vernacular name IUCN N
Amphibians

1 Chioglossa lusitanica Chiolus Golden–striped salamander VU 167
2 Calotriton asper–0 Calasp–0 Pyrenean brook salamander NT 186
2.1 Calotriton asper–1 Calasp–1 Pyrenean brook salamander NT 184
2.2 Calotriton arnoldi–1 Calarn–1 Montseny brook newt CR 2
3 Salamandra salamandra–0 Salsal–0 Common fire salamander LC 1,409
3.1 Salamandra salamandra–1  Salsal–1 Common fire salamander LC 1,315
3.2 Salamandra longirostris–1 Sallong–1 Salamandra penibética VU 94
4 Triturus pygmaeus Tripyg Southern marbled newt VU 466
5 Alytes dickhilleni Alydic Betic midwife toad VU 135
6 Rana iberica Ranibe Iberian frog VU 473
7 Rana pyrenaica Ranpyr Pyrenean frog VU 24

Reptiles
8 Algyroides marchi Algmar Spanish algyroides VU 30
9 Iberolacerta bonnali Ibebon Pyrenean rock lizard VU 25
10 Iberolacerta monticola–0 Ibemon–0 Iberian rock lizard VU 169
10.1 Iberolacerta monticola–1  Ibemon–1 Iberian rock lizard VU 128
10.2 Iberolacerta cyreni–1 Ibecyr–1 Cyren's rock lizard VU 39
10.3 Iberolacerta galani–1 Ibegal–1 Galan's rock lizard NT 10
10.4 Iberolacerta matinezricai–1  Ibemar–1 Peña de Francia rock lizard CR 2
11 Iberolacerta aranica Ibeara Aran rock lizard EN 3
12 Iberolacerta aurelioi Ibeaur Aurelio's rock lizard EN 5
13 Mauremys leprosa Maulep Mediterranian turtle VU 1,427
14 Testudo graeca Tesgra Moorish tortoise EN 38

Birds
15 Aquila adalberti Aquada Spanish imperial eagle EN 163
16 Aegypius monachus Aegmon Eurasian black vulture VU 151
17 Apus caffer Apucaf White–rumped swift VU 62
18 Cercotrichas galactotes Cergal Rufous–tailed scrub–robin EN 414
19 Chersophilus duponti Chedup Dupont's lark EN 233
20 Emberiza shoeniclus  Embsho Common reed bunting LC 118
21 Ptererocles alchata Ptealc Pin–tailed sandgrouse VU 477
22 Pterocles orientalis Pteori Black–bellied sandgrouse VU 864
23 Tetrao urogallus  Teturo Western capercaillie  LC 141
24 Tetrax tetrax Tettet Little bustard VU 1,339
25 Fulica cristata Fulcri Crested coot CR 26
26 Oxyura leucocephala Oxyleu White–headed duck EN 57
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Mammals

27 Arvicola sapidus Arvsap Southern water vole VU 1,498

28 Microtus cabrerae Miccab Cabrera's vole VU 220

29 Galemys pyrenaicus Galpyr Pyrenean desman VU 429

30 Lepus castroviejoi Lepcas Broom hare VU 63

31 Lynx pardinus Lynpar Iberian lynx CR 27

32 Rhinolophus mehelyi Rhimeh Mehely's horseshoe bat EN 165

Tabla 1s. (Cont.)

       ID     Species                         Abbr.            Vernacular name                 IUCN    N
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Table 2s. Predictor variables that have  a potential influence on threatened vertebrate distributions 
in Spain and  are taken into account in the species distribution models. Variable sources: (1) IGN, 
Instituto Geográfico Nacional, 1999, Road map, Iberian Peninsula, Balearics and Canary Island, National 
Geographic Institute, Ministry of Development, Madrid, Spain. (2) United States Geological Survey, 
1996,  GTOPO30, Land Processes Distributed Active Archive Center, EROS Data Center, https://lta.
cr.usgs.gov/GTOPO30. (3) Farr T. G., Kobrick, M., 2000. Shuttle Radar Topography Mission produces 
a wealth of data. EOS Transactions, American Geophysical Union, 81: 583–585. (4) AEMET, Agencia 
Estatal de Meteorología, Spanish Ministry of Agriculture, Food and Environment. http://escenarios.inm.
es/ (Accessed on June 2007). (5) Pearson, R. G., Dawson, T. P., Berry, P. M., Harrison, P. A., 2002. 
SPECIES: A Spatial Evaluation of Climate Impact on the Envelope of Species. Ecological Modelling, 
154: 289–300. (6) López Fernández, M. L., López, F. M. S., 2008. Artículo 1: Ideas básicas de "Global 
Bioclimatics", del profesor Rivas–Martínez. Guía para reconocer y clasificar las unidades bioclimáticas. 
Publicaciones de Biología de la Universidad de Navarra, Serie Botánica, 17: 3–188. (7) Supan, 1884,  
Oceanity map of the earth. Continental Index. (8) Oak Ridge National Laboratory, LandScan 2000 
Global Population Database, Tennesse, USA, Oak Ridge National Laboratory, 2001.

Tabla 2s. Variables predictivas que pueden influir en la distribución de los vertebrados amenazados en 
España y que se toman en cuenta en los modelos de distribución de las especies. (Para la información 
sobre las fuentes variables, véase arriba).   

      
      Abbr     Variable                                          Abbr      Variable

Spatial situation

La Latitude (ºN) (1) Lo Longitude (ºE) (1)

Topography

A Mean altitude (m)  (2) S Slope (◦) (calculated from altitude)

WE Westward exposure degree (º) (3) SE Southward exposure degree 3 (3)

Climate

   Climatic variables

Temp Mean annual temperature (ºC) (4) TWin Mean temperature in winter (ºC) (4)

TJan Mean temperature in January (ºC) (4) Prec Mean annual precipitation (mm) (4)

TJul Mean temperature in July (ºC) (4) PreSpr Mean precipitation in spring (mm)(4)

TSpr Mean temperature in srping (ºC) (4) PreSum Mean precipitation in summer (mm) (4)

TSum Mean temperature in summer (ºC) (4) PreAut Mean precipitation in autum (mm) (4)

TAut Mean temperature in autum (ºC) (4) PreWin Mean precipitation in winter (mm) (4)

   Bioclimatic variables

MinT Minimum temperature (ºC) (5) ConI Continental Index (ºC) (7)

Tp0 Mean temperatures annual of days  GDD0 Growing degree–days when annual  

 above 0 ºC (6)  temperature sum > 0 ºC (5)

Tp5 Mean temperatures annual of days   GDD5 Growing degree–days when annual  

 above 5 ºC (6)  temperature sum > 5 ºC (5)

Pp0 Mean precipitation annual of days OI0 Ombrothermic index of days with  

 with temperatures > 0 ºC (mm) (6)  temperatures > 0 ºC (mm/ºC) (6)

Pp5 Mean precipitation annual of days OI5 Ombrothermic index of days with  

 with temperatures > 5 ºC (mm) (6)  temperatures > 5 ºC (mm/ºC) (6)

Other human activities

Dhi Distance to the nearest U500 Distance to the nearest urban centre 

 highway (km) (1)  with >  500,000 inhabitants (km) (1)

U100 Distance to the nearest urban centre  HPd Human population density in 2000  

 with > 100,000 inhabitants (km) (1)  (number of inhabitants/km2) (8)
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Fig. 3s. Consensual favourability and the degree of uncertainty according to taxonomy uncertainty. 
Suffixes –0 and –1 indicate species before and after being split into the current species, respectively. 
The number above  each picture (2, 3 and 10) indicates the ID of the species with taxonomy uncertainty  
corresponding  to table 1s.

Fig. 3s. Valores consensuados de favorabilidad y grado de incertidumbre según la incertidumbre taxonó-
mica. Los sufijos –0 y –1 indican el nombre de las especies antes y después de dividirse en las especies 
actuales, respectivamente. El número de cada imagen (2, 3 y 10) indica el número de identificación de 
las especies con incertidumbre taxonómica, que coincide con el de la columna ID de la tabla 1s.                    

Fig. 1s. Models according to the overall sources of ambiguity analyzed, and variation partitioning from 
each General Circulation Model and emission scenarios for the species analyzed. The number above  
each picture (from 1 to 32) indicates the ID of the species corresponding to table 1s.

Fig. 1s. Modelos según las fuentes generales de ambigüedad analizadas y partición de la variación de 
cada modelo de circulación general y situación hipotética de emisiones para la especie analizada. El 
número de cada imagen (del 1 al 32) es el número de identificación de las especie que figura en la 
columna ID de la tabla 1s.

Fig. 2s. Minimum, maximum and average consensus measures of the coinciding and non–coinciding 
territories from among the various alternatives proposed, and the degree of uncertainty in the periods 
2011–2040, 2041–2070 and 2071–2100  for the species analyzed. The number above each picture (from 
1 to 32) indicates the ID of the species corresponding to table 1s.

Fig. 2s. Medidas consensuadas mínima, máxima y media de los territorios coincidentes y no coinci-
dentes entre las distintas alternativas propuestas y grado de incertidumbre en los períodos 2011–2040, 
2041–2070 y 2071–2100, para las especies analizadas. El número de cada imagen (del 1 al 32) es el 
número de identificación de las especies, que figura en la columna ID de la tabla 1s.


